-
1
-
-
0022132080
-
Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases
-
Allison LA, Moyle M, Shales M, Ingles CJ, (1985) Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599-610.
-
(1985)
Cell
, vol.42
, pp. 599-610
-
-
Allison, L.A.1
Moyle, M.2
Shales, M.3
Ingles, C.J.4
-
2
-
-
0009370184
-
A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II
-
Corden JL, Cadena DL, Ahearn JM Jr, Dahmus ME, (1985) A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc Natl Acad Sci U S A 82: 7934-7938.
-
(1985)
Proc Natl Acad Sci U S A
, vol.82
, pp. 7934-7938
-
-
Corden, J.L.1
Cadena, D.L.2
Ahearn Jr., J.M.3
Dahmus, M.E.4
-
3
-
-
84872405841
-
Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription
-
Heidemann M, Hintermair C, Voss K, Eick D, (2012) Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829: 55-62.
-
(2012)
Biochim Biophys Acta
, vol.1829
, pp. 55-62
-
-
Heidemann, M.1
Hintermair, C.2
Voss, K.3
Eick, D.4
-
4
-
-
0023651270
-
Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II
-
Nonet M, Sweetser D, Young RA, (1987) Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50: 909-915.
-
(1987)
Cell
, vol.50
, pp. 909-915
-
-
Nonet, M.1
Sweetser, D.2
Young, R.A.3
-
5
-
-
0023807922
-
The C-terminal domain of the largest subunit of RNA polymerase II of saccharomyces cerevisiae, drosophila melanogaster, and mammals: A conserved structure with an essential function
-
Allison LA, Wong JK, Fitzpatrick VD, Moyle M, Ingles CJ, (1988) The C-terminal domain of the largest subunit of RNA polymerase II of saccharomyces cerevisiae, drosophila melanogaster, and mammals: A conserved structure with an essential function. Mol Cell Biol 8: 321-329.
-
(1988)
Mol Cell Biol
, vol.8
, pp. 321-329
-
-
Allison, L.A.1
Wong, J.K.2
Fitzpatrick, V.D.3
Moyle, M.4
Ingles, C.J.5
-
6
-
-
0024022636
-
The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro
-
Zehring WA, Lee JM, Weeks JR, Jokerst RS, Greenleaf AL, (1988) The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc Natl Acad Sci U S A 85: 3698-3702.
-
(1988)
Proc Natl Acad Sci U S A
, vol.85
, pp. 3698-3702
-
-
Zehring, W.A.1
Lee, J.M.2
Weeks, J.R.3
Jokerst, R.S.4
Greenleaf, A.L.5
-
7
-
-
0025027915
-
RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals
-
Scafe C, Chao D, Lopes J, Hirsch JP, Henry S, et al. (1990) RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347: 491-4.
-
(1990)
Nature
, vol.347
, pp. 491-494
-
-
Scafe, C.1
Chao, D.2
Lopes, J.3
Hirsch, J.P.4
Henry, S.5
-
8
-
-
0025790439
-
The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex
-
Lu H, Flores O, Weinmann R, Reinberg D, (1991) The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci U S A 88: 10004-10008.
-
(1991)
Proc Natl Acad Sci U S A
, vol.88
, pp. 10004-10008
-
-
Lu, H.1
Flores, O.2
Weinmann, R.3
Reinberg, D.4
-
9
-
-
0037073061
-
Regulation of transcription elongation by phosphorylation
-
Kobor MS, Greenblatt J, (2002) Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 1577: 261-275.
-
(2002)
Biochim Biophys Acta
, vol.1577
, pp. 261-275
-
-
Kobor, M.S.1
Greenblatt, J.2
-
10
-
-
34347273423
-
Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator
-
Max T, Sogaard M, Svejstrup JQ, (2007) Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J Biol Chem 282: 14113-14120.
-
(2007)
J Biol Chem
, vol.282
, pp. 14113-14120
-
-
Max, T.1
Sogaard, M.2
Svejstrup, J.Q.3
-
11
-
-
15644372864
-
5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II
-
McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, et al. (1997) 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 11: 3306-3318.
-
(1997)
Genes Dev
, vol.11
, pp. 3306-3318
-
-
McCracken, S.1
Fong, N.2
Rosonina, E.3
Yankulov, K.4
Brothers, G.5
-
12
-
-
70350389837
-
Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7
-
Kim M, Suh H, Cho EJ, Buratowski S, (2009) Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J Biol Chem 284: 26421-26426.
-
(2009)
J Biol Chem
, vol.284
, pp. 26421-26426
-
-
Kim, M.1
Suh, H.2
Cho, E.J.3
Buratowski, S.4
-
13
-
-
65549156025
-
TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
-
Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, et al. (2009) TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 34: 387-393.
-
(2009)
Mol Cell
, vol.34
, pp. 387-393
-
-
Akhtar, M.S.1
Heidemann, M.2
Tietjen, J.R.3
Zhang, D.W.4
Chapman, R.D.5
-
14
-
-
0035893314
-
Opposing effects of Ctk1 kinase and Fcp1 phosphatase at ser 2 of the RNA polymerase II C-terminal domain
-
Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S, (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15: 3319-3329.
-
(2001)
Genes Dev
, vol.15
, pp. 3319-3329
-
-
Cho, E.J.1
Kobor, M.S.2
Kim, M.3
Greenblatt, J.4
Buratowski, S.5
-
15
-
-
84862977456
-
CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
-
Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, et al. (2012) CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336: 1723-1725.
-
(2012)
Science
, vol.336
, pp. 1723-1725
-
-
Mayer, A.1
Heidemann, M.2
Lidschreiber, M.3
Schreieck, A.4
Sun, M.5
-
16
-
-
0033165865
-
An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae
-
Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O, et al. (1999) An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 4: 55-62.
-
(1999)
Mol Cell
, vol.4
, pp. 55-62
-
-
Kobor, M.S.1
Archambault, J.2
Lester, W.3
Holstege, F.C.4
Gileadi, O.5
-
17
-
-
0033564705
-
A protein phosphatase functions to recycle RNA polymerase II
-
Cho H, Kim TK, Mancebo H, Lane WS, Flores O, et al. (1999) A protein phosphatase functions to recycle RNA polymerase II. Genes Dev 13: 1540-1552.
-
(1999)
Genes Dev
, vol.13
, pp. 1540-1552
-
-
Cho, H.1
Kim, T.K.2
Mancebo, H.3
Lane, W.S.4
Flores, O.5
-
18
-
-
84863229897
-
Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination
-
Zhang DW, Mosley AL, Ramisetty SR, Rodriguez-Molina JB, Washburn MP, et al. (2012) Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 287: 8541-8551.
-
(2012)
J Biol Chem
, vol.287
, pp. 8541-8551
-
-
Zhang, D.W.1
Mosley, A.L.2
Ramisetty, S.R.3
Rodriguez-Molina, J.B.4
Washburn, M.P.5
-
19
-
-
0024354605
-
Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of saccharomyces cerevisiae RNA polymerase II
-
Nonet ML, Young RA, (1989) Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715-24.
-
(1989)
Genetics
, vol.123
, pp. 715-724
-
-
Nonet, M.L.1
Young, R.A.2
-
20
-
-
0027253864
-
A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast
-
Thompson CM, Koleske AJ, Chao DM, Young RA, (1993) A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73: 1361-1375.
-
(1993)
Cell
, vol.73
, pp. 1361-1375
-
-
Thompson, C.M.1
Koleske, A.J.2
Chao, D.M.3
Young, R.A.4
-
21
-
-
84868094446
-
Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II
-
Robinson PJ, Bushnell DA, Trnka MJ, Burlingame AL, Kornberg RD, (2012) Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. Proc Natl Acad Sci U S A 109: 17931-17935.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 17931-17935
-
-
Robinson, P.J.1
Bushnell, D.A.2
Trnka, M.J.3
Burlingame, A.L.4
Kornberg, R.D.5
-
22
-
-
33646023157
-
Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA
-
Andrau JC, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp MG, et al. (2006) Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell 22: 179-192.
-
(2006)
Mol Cell
, vol.22
, pp. 179-192
-
-
Andrau, J.C.1
van de Pasch, L.2
Lijnzaad, P.3
Bijma, T.4
Koerkamp, M.G.5
-
23
-
-
33646075157
-
Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions
-
Zhu X, Wiren M, Sinha I, Rasmussen NN, Linder T, et al. (2006) Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions. Mol Cell 22: 169-178.
-
(2006)
Mol Cell
, vol.22
, pp. 169-178
-
-
Zhu, X.1
Wiren, M.2
Sinha, I.3
Rasmussen, N.N.4
Linder, T.5
-
24
-
-
6044249068
-
A high resolution protein interaction map of the yeast mediator complex
-
Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, et al. (2004) A high resolution protein interaction map of the yeast mediator complex. Nucleic Acids Res 32: 5379-5391.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 5379-5391
-
-
Guglielmi, B.1
van Berkum, N.L.2
Klapholz, B.3
Bijma, T.4
Boube, M.5
-
25
-
-
0035883746
-
The Swi5 activator recruits the mediator complex to the HO promoter without RNA polymerase II
-
Bhoite LT, Yu Y, Stillman DJ, (2001) The Swi5 activator recruits the mediator complex to the HO promoter without RNA polymerase II. Genes Dev 15: 2457-2469.
-
(2001)
Genes Dev
, vol.15
, pp. 2457-2469
-
-
Bhoite, L.T.1
Yu, Y.2
Stillman, D.J.3
-
26
-
-
0013592684
-
Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation
-
Han SJ, Lee YC, Gim BS, Ryu GH, Park SJ, et al. (1999) Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol Cell Biol 19: 979-988.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 979-988
-
-
Han, S.J.1
Lee, Y.C.2
Gim, B.S.3
Ryu, G.H.4
Park, S.J.5
-
28
-
-
85027942059
-
A conserved mediator-CDK8 kinase module association regulates mediator-RNA polymerase II interaction
-
Tsai KL, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, et al. (2013) A conserved mediator-CDK8 kinase module association regulates mediator-RNA polymerase II interaction. Nat Struct Mol Biol 20: 611-619.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 611-619
-
-
Tsai, K.L.1
Sato, S.2
Tomomori-Sato, C.3
Conaway, R.C.4
Conaway, J.W.5
-
29
-
-
0032110627
-
Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases
-
Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, et al. (1998) Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2: 43-53.
-
(1998)
Mol Cell
, vol.2
, pp. 43-53
-
-
Hengartner, C.J.1
Myer, V.E.2
Liao, S.M.3
Wilson, C.J.4
Koh, S.S.5
-
30
-
-
0842347413
-
Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex
-
Liu Y, Kung C, Fishburn J, Ansari AZ, Shokat KM, et al. (2004) Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol 24: 1721-35.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 1721-1735
-
-
Liu, Y.1
Kung, C.2
Fishburn, J.3
Ansari, A.Z.4
Shokat, K.M.5
-
31
-
-
0033000483
-
GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8
-
Hirst M, Kobor MS, Kuriakose N, Greenblatt J, Sadowski I, (1999) GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol Cell 3: 673-8.
-
(1999)
Mol Cell
, vol.3
, pp. 673-678
-
-
Hirst, M.1
Kobor, M.S.2
Kuriakose, N.3
Greenblatt, J.4
Sadowski, I.5
-
32
-
-
77956046092
-
Quantitative genetic interaction mapping using the E-MAP approach
-
Collins SR, Roguev A, Krogan NJ, (2010) Quantitative genetic interaction mapping using the E-MAP approach. Methods Enzymol 470: 205-231.
-
(2010)
Methods Enzymol
, vol.470
, pp. 205-231
-
-
Collins, S.R.1
Roguev, A.2
Krogan, N.J.3
-
33
-
-
0029037999
-
Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations
-
West ML, Corden JL, (1995) Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140: 1223-1233.
-
(1995)
Genetics
, vol.140
, pp. 1223-1233
-
-
West, M.L.1
Corden, J.L.2
-
34
-
-
0032567081
-
Dissecting the regulatory circuitry of a eukaryotic genome
-
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, et al. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728.
-
(1998)
Cell
, vol.95
, pp. 717-728
-
-
Holstege, F.C.1
Jennings, E.G.2
Wyrick, J.J.3
Lee, T.I.4
Hengartner, C.J.5
-
35
-
-
77957766550
-
Uniform transitions of the general RNA polymerase II transcription complex
-
Mayer A, Lidschreiber M, Siebert M, Leike K, Soding J, et al. (2010) Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 17: 1272-1278.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1272-1278
-
-
Mayer, A.1
Lidschreiber, M.2
Siebert, M.3
Leike, K.4
Soding, J.5
-
36
-
-
80455140227
-
Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123
-
Schulze JM, Hentrich T, Nakanishi S, Gupta A, Emberly E, et al. (2011) Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev 25: 2242-2247.
-
(2011)
Genes Dev
, vol.25
, pp. 2242-2247
-
-
Schulze, J.M.1
Hentrich, T.2
Nakanishi, S.3
Gupta, A.4
Emberly, E.5
-
37
-
-
77956344274
-
Chemical-genomic dissection of the CTD code
-
Tietjen JR, Zhang DW, Rodriguez-Molina JB, White BE, Akhtar MS, et al. (2010) Chemical-genomic dissection of the CTD code. Nat Struct Mol Biol 17: 1154-1161.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1154-1161
-
-
Tietjen, J.R.1
Zhang, D.W.2
Rodriguez-Molina, J.B.3
White, B.E.4
Akhtar, M.S.5
-
38
-
-
77957786100
-
Gene-specific RNA polymerase II phosphorylation and the CTD code
-
Kim H, Erickson B, Luo W, Seward D, Graber JH, et al. (2010) Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat Struct Mol Biol 17: 1279-1286.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1279-1286
-
-
Kim, H.1
Erickson, B.2
Luo, W.3
Seward, D.4
Graber, J.H.5
-
39
-
-
84856273602
-
A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes
-
Bataille AR, Jeronimo C, Jacques PE, Laramee L, Fortin ME, et al. (2012) A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 45: 158-170.
-
(2012)
Mol Cell
, vol.45
, pp. 158-170
-
-
Bataille, A.R.1
Jeronimo, C.2
Jacques, P.E.3
Laramee, L.4
Fortin, M.E.5
-
40
-
-
23944462969
-
Genome-wide map of nucleosome acetylation and methylation in yeast
-
Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, et al. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122: 517-527.
-
(2005)
Cell
, vol.122
, pp. 517-527
-
-
Pokholok, D.K.1
Harbison, C.T.2
Levine, S.3
Cole, M.4
Hannett, N.M.5
-
41
-
-
0037336041
-
Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast
-
Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, et al. (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17: 654-663.
-
(2003)
Genes Dev
, vol.17
, pp. 654-663
-
-
Xiao, T.1
Hall, H.2
Kizer, K.O.3
Shibata, Y.4
Hall, M.C.5
-
42
-
-
77958608570
-
A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme
-
Suh MH, Meyer PA, Gu M, Ye P, Zhang M, et al. (2010) A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 285: 34027-34038.
-
(2010)
J Biol Chem
, vol.285
, pp. 34027-34038
-
-
Suh, M.H.1
Meyer, P.A.2
Gu, M.3
Ye, P.4
Zhang, M.5
-
43
-
-
37249015899
-
Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
-
Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, et al. (2007) Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318: 1780-2.
-
(2007)
Science
, vol.318
, pp. 1780-1782
-
-
Chapman, R.D.1
Heidemann, M.2
Albert, T.K.3
Mailhammer, R.4
Flatley, A.5
-
44
-
-
84856285875
-
RNA polymerase II carboxy-terminal domain phosphorylation regulates protein stability of the Set2 methyltransferase and histone H3 di- and trimethylation at lysine 36
-
Fuchs SM, Kizer KO, Braberg H, Krogan NJ, Strahl BD, (2011) RNA polymerase II carboxy-terminal domain phosphorylation regulates protein stability of the Set2 methyltransferase and histone H3 di- and trimethylation at lysine 36. J Biol Chem 287: 3249-3256.
-
(2011)
J Biol Chem
, vol.287
, pp. 3249-3256
-
-
Fuchs, S.M.1
Kizer, K.O.2
Braberg, H.3
Krogan, N.J.4
Strahl, B.D.5
-
45
-
-
34247341747
-
H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
-
Brickner D, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee P, et al. (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5: e81.
-
(2007)
PLoS Biol
, vol.5
-
-
Brickner, D.1
Cajigas, I.2
Fondufe-Mittendorf, Y.3
Ahmed, S.4
Lee, P.5
-
46
-
-
64549091902
-
Where does mediator bind in vivo?
-
Fan X, Struhl K, (2009) Where does mediator bind in vivo? PLoS One 4: e5029.
-
(2009)
PLoS One
, vol.4
-
-
Fan, X.1
Struhl, K.2
-
47
-
-
23744490065
-
Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets
-
van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TT, van Leenen D, et al. (2005) Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell 19: 511-522.
-
(2005)
Mol Cell
, vol.19
, pp. 511-522
-
-
van de Peppel, J.1
Kettelarij, N.2
van Bakel, H.3
Kockelkorn, T.T.4
van Leenen, D.5
-
48
-
-
35548985701
-
Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal
-
Ju D, Xu H, Wang X, Xie Y, (2007) Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. Biochim Biophys Acta 1773: 1672-1680.
-
(2007)
Biochim Biophys Acta
, vol.1773
, pp. 1672-1680
-
-
Ju, D.1
Xu, H.2
Wang, X.3
Xie, Y.4
-
49
-
-
0035089793
-
A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair
-
Wong JMS, Ingles CJ, (2001) A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair. Molecular and General Genetics 264: 842-851.
-
(2001)
Molecular and General Genetics
, vol.264
, pp. 842-851
-
-
Wong, J.M.S.1
Ingles, C.J.2
-
50
-
-
80053445278
-
Elevated proteasome capacity extends replicative lifespan in saccharomyces cerevisiae
-
Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, et al. (2011) Elevated proteasome capacity extends replicative lifespan in saccharomyces cerevisiae. PLoS Genet 7: e1002253.
-
(2011)
PLoS Genet
, vol.7
-
-
Kruegel, U.1
Robison, B.2
Dange, T.3
Kahlert, G.4
Delaney, J.R.5
-
51
-
-
77749274424
-
Proteasomal degradation of Rpn4 in saccharomyces cerevisiae is critical for cell viability under stressed conditions
-
Wang X, Xu H, Ha SW, Ju D, Xie Y, (2010) Proteasomal degradation of Rpn4 in saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics 184: 335-342.
-
(2010)
Genetics
, vol.184
, pp. 335-342
-
-
Wang, X.1
Xu, H.2
Ha, S.W.3
Ju, D.4
Xie, Y.5
-
52
-
-
0036226237
-
Control of 26S proteasome expression by transcription factors regulating multidrug resistance in saccharomyces cerevisiae
-
Owsianik G, Balzi lL, Ghislain M, (2002) Control of 26S proteasome expression by transcription factors regulating multidrug resistance in saccharomyces cerevisiae. Mol Microbiol 43: 1295-1308.
-
(2002)
Mol Microbiol
, vol.43
, pp. 1295-1308
-
-
Owsianik, G.1
Balzi, L.2
Ghislain, M.3
-
53
-
-
0037426868
-
Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12
-
Nelson C, Goto S, Lund K, Hung W, Sadowski I, (2003) Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421: 187-190.
-
(2003)
Nature
, vol.421
, pp. 187-190
-
-
Nelson, C.1
Goto, S.2
Lund, K.3
Hung, W.4
Sadowski, I.5
-
54
-
-
84856786805
-
Cdk8 regulates stability of the transcription factor Phd1 to control pseudohyphal differentiation of saccharomyces cerevisiae
-
Raithatha S, Su TC, Lourenco P, Goto S, Sadowski I, (2012) Cdk8 regulates stability of the transcription factor Phd1 to control pseudohyphal differentiation of saccharomyces cerevisiae. Mol Cell Biol 32: 664-674.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 664-674
-
-
Raithatha, S.1
Su, T.C.2
Lourenco, P.3
Goto, S.4
Sadowski, I.5
-
55
-
-
33644843117
-
A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor
-
Hahn JS, Neef DW, Thiele DJ, (2006) A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60: 240-251.
-
(2006)
Mol Microbiol
, vol.60
, pp. 240-251
-
-
Hahn, J.S.1
Neef, D.W.2
Thiele, D.J.3
-
56
-
-
84857176030
-
Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast
-
Rosonina E, Duncan SM, Manley JL, (2012) Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev 26: 350-355.
-
(2012)
Genes Dev
, vol.26
, pp. 350-355
-
-
Rosonina, E.1
Duncan, S.M.2
Manley, J.L.3
-
57
-
-
0035339092
-
Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase
-
Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, et al. (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15: 1078-1092.
-
(2001)
Genes Dev
, vol.15
, pp. 1078-1092
-
-
Chi, Y.1
Huddleston, M.J.2
Zhang, X.3
Young, R.A.4
Annan, R.S.5
-
58
-
-
27744495040
-
A putative stimulatory role for activator turnover in gene expression
-
Lipford JR, Smith GT, Chi Y, Deshaies RJ, (2005) A putative stimulatory role for activator turnover in gene expression. Nature 438: 113-116.
-
(2005)
Nature
, vol.438
, pp. 113-116
-
-
Lipford, J.R.1
Smith, G.T.2
Chi, Y.3
Deshaies, R.J.4
-
59
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in saccharomyces cerevisiae
-
Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in saccharomyces cerevisiae. Yeast 14: 953-961.
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie 3rd, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
-
60
-
-
0009355836
-
Fusion of escherichia coli lacZ to the cytochrome c gene of saccharomyces cerevisiae
-
Guarente L, Ptashne M, (1981) Fusion of escherichia coli lacZ to the cytochrome c gene of saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78: 2199-2203.
-
(1981)
Proc Natl Acad Sci U S A
, vol.78
, pp. 2199-2203
-
-
Guarente, L.1
Ptashne, M.2
-
61
-
-
78649938122
-
Functional overlap and regulatory links shape genetic interactions between signaling pathways
-
van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, et al. (2010) Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell 143: 991-1004.
-
(2010)
Cell
, vol.143
, pp. 991-1004
-
-
van Wageningen, S.1
Kemmeren, P.2
Lijnzaad, P.3
Margaritis, T.4
Benschop, J.J.5
-
62
-
-
79955949044
-
The specificity and topology of chromatin interaction pathways in yeast
-
Lenstra TL, Benschop JJ, Kim T, Schulze JM, Brabers NA, et al. (2011) The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42: 536-549.
-
(2011)
Mol Cell
, vol.42
, pp. 536-549
-
-
Lenstra, T.L.1
Benschop, J.J.2
Kim, T.3
Schulze, J.M.4
Brabers, N.A.5
-
63
-
-
78651307692
-
YPA: An integrated repository of promoter features in saccharomyces cerevisiae
-
Chang DT, Huang CY, Wu CY, Wu WS, (2011) YPA: An integrated repository of promoter features in saccharomyces cerevisiae. Nucleic Acids Res 39: D647-52.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Chang, D.T.1
Huang, C.Y.2
Wu, C.Y.3
Wu, W.S.4
-
65
-
-
33846689706
-
Using GOstats to test gene lists for GO term association
-
Falcon S, Gentleman R, (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23: 257-258.
-
(2007)
Bioinformatics
, vol.23
, pp. 257-258
-
-
Falcon, S.1
Gentleman, R.2
-
66
-
-
69749117490
-
Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation
-
Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, et al. (2009) Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell 35: 626-641.
-
(2009)
Mol Cell
, vol.35
, pp. 626-641
-
-
Schulze, J.M.1
Jackson, J.2
Nakanishi, S.3
Gardner, J.M.4
Hentrich, T.5
-
67
-
-
2142658771
-
Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in saccharomyces cerevisiae
-
Keogh MC, Buratowski S, (2004) Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in saccharomyces cerevisiae. Methods Mol Biol 257: 1-16.
-
(2004)
Methods Mol Biol
, vol.257
, pp. 1-16
-
-
Keogh, M.C.1
Buratowski, S.2
-
68
-
-
77949576511
-
rMAT-an R/Bioconductor package for analyzing ChIP-chip experiments
-
Droit A, Cheung C, Gottardo R, (2010) rMAT-an R/Bioconductor package for analyzing ChIP-chip experiments. Bioinformatics 26: 678-679.
-
(2010)
Bioinformatics
, vol.26
, pp. 678-679
-
-
Droit, A.1
Cheung, C.2
Gottardo, R.3
-
69
-
-
84857890387
-
CHROMATRA: A galaxy tool for visualizing genome-wide chromatin signatures
-
Hentrich T, Schulze JM, Emberly E, Kobor MS, (2012) CHROMATRA: A galaxy tool for visualizing genome-wide chromatin signatures. Bioinformatics 28: 717-718.
-
(2012)
Bioinformatics
, vol.28
, pp. 717-718
-
-
Hentrich, T.1
Schulze, J.M.2
Emberly, E.3
Kobor, M.S.4
-
70
-
-
0020645052
-
Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast
-
Guarente L, (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101: 181-191.
-
(1983)
Methods Enzymol
, vol.101
, pp. 181-191
-
-
Guarente, L.1
|