메뉴 건너뛰기




Volumn 4, Issue 2, 2013, Pages 255-283

A classification framework applied to cancer gene expression profiles

Author keywords

Cancer; Classification; Feature selection; Gene expression; Machine learning; Supervised learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; FEATURE EXTRACTION; GENE EXPRESSION; LEARNING SYSTEMS; PROTEINS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 84881234696     PISSN: 20402295     EISSN: 20402309     Source Type: Journal    
DOI: 10.1260/2040-2295.4.2.255     Document Type: Article
Times cited : (48)

References (70)
  • 2
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270:467-70.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 3
    • 84255194463 scopus 로고    scopus 로고
    • Gene selection and classification for cancer microarray data based on machine learning and similarity measures
    • Liu Q, Sung AH, Chen Z, Liu J, Chen L, Qiao M, Wang Z, Huang X, Deng Y. Gene selection and classification for cancer microarray data based on machine learning and similarity measures. BMC Genomics, 2011, 12 (Suppl 5):S1.
    • (2011) BMC Genomics , vol.12 , Issue.SUPPL. 5
    • Liu, Q.1    Sung, A.H.2    Chen, Z.3    Liu, J.4    Chen, L.5    Qiao, M.6    Wang, Z.7    Huang, X.8    Deng, Y.9
  • 4
    • 79958227096 scopus 로고    scopus 로고
    • Cancer classification based on microarray gene expression data using a principal component accumulation method
    • Liu JJ, Cai WS, Shao XG. Cancer classification based on microarray gene expression data using a principal component accumulation method. SCIENCE CHINA Chemistry, 2011, 54(5):802-11.
    • (2011) SCIENCE CHINA Chemistry , vol.54 , Issue.5 , pp. 802-811
    • Liu, J.J.1    Cai, W.S.2    Shao, X.G.3
  • 5
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc., 2002, 97:77-87.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 6
    • 0034533063 scopus 로고    scopus 로고
    • Computational methods for gene expression-based tumor classification
    • Xiong M, Jin L, Li W, Boerwinkle E. Computational Methods for Gene Expression-Based Tumor Classification. BioTechniques, 2000, 29(6):1264-1270.
    • (2000) BioTechniques , vol.29 , Issue.6 , pp. 1264-1270
    • Xiong, M.1    Jin, L.2    Li, W.3    Boerwinkle, E.4
  • 8
    • 84881607987 scopus 로고    scopus 로고
    • Identification of a 12-gene signature for lung cancer prognosis through machine learning
    • Bard E, Hu W. Identification of a 12-Gene Signature for Lung Cancer Prognosis through Machine Learning. Journal of Cancer Therapy, 2011, 2(2):148-156.
    • (2011) Journal of Cancer Therapy , vol.2 , Issue.2 , pp. 148-156
    • Bard, E.1    Hu, W.2
  • 9
    • 84860319384 scopus 로고    scopus 로고
    • Data mining classification techniques applied for breast cancer diagnosis and prognosis
    • Gupta S, Kumar D, Sharma A. Data Mining Classification Techniques Applied for Breast Cancer Diagnosis and Prognosis. Indian Journal of Computer Science and Engineering, 2011, 2(2):188-195.
    • (2011) Indian Journal of Computer Science and Engineering , vol.2 , Issue.2 , pp. 188-195
    • Gupta, S.1    Kumar, D.2    Sharma, A.3
  • 10
    • 84879475889 scopus 로고    scopus 로고
    • Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile
    • George GVS, Raj VC. Review on Feature Selection Techniques and the Impact of SVM for Cancer Classification using Gene Expression Profile. International Journal of Computer Science & Engineering Survey, 2011, 2(3):1-12.
    • (2011) International Journal of Computer Science & Engineering Survey , vol.2 , Issue.3 , pp. 1-12
    • Gvs, G.1    Raj, V.C.2
  • 12
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Lu Y, Han J. Cancer classification using gene expression data. Inform. Syst., 2003, 28(4):243-268.
    • (2003) Inform. Syst , vol.28 , Issue.4 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 13
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz JA, Wishart DS. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Inform., 2006, 2:59-77.
    • (2006) Cancer Inform , vol.2 , pp. 59-77
    • Cruz, J.A.1    Wishart, D.S.2
  • 16
    • 0035300437 scopus 로고    scopus 로고
    • Transcriptional gene expression profiles of colorectal adenoma adenocarcinoma and normal tissue examined by oligonucleotide arrays
    • Notterman DA, Alon U, Sierk AJ, Levine AJ. Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays. Cancer Res., 2001, 61:3124-30.
    • (2001) Cancer Res , vol.61 , pp. 3124-3130
    • Notterman, D.A.1    Alon, U.2    Sierk, A.J.3    Levine, A.J.4
  • 19
    • 28344434109 scopus 로고    scopus 로고
    • Identify breast cancer subtypes by gene expression profiles
    • Shieh GS, Bai CH, Lee C. Identify Breast Cancer Subtypes by Gene Expression Profiles. Journal of Data Science, 2004, 2:165-175.
    • (2004) Journal of Data Science , vol.2 , pp. 165-175
    • Shieh, G.S.1    Bai, C.H.2    Lee, C.3
  • 22
    • 35748932917 scopus 로고    scopus 로고
    • Areview of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. Areview of feature selection techniques in bioinformatics. Bioinformatics, 2007, 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 23
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • Jafari P, Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med. Inform. Decis. Mak., 2006, 6:27.
    • (2006) BMC Med. Inform. Decis. Mak , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 24
    • 34547355032 scopus 로고    scopus 로고
    • Improving feature subset selection using a genetic algorithm for microarray gene expression data
    • Tan F, Fu X, Zhang Y, Bourgeois AG. Improving feature subset selection using a genetic algorithm for microarray gene expression data. Proc. IEEE Congr. Evolut. Comput., 2006, 2529-2534.
    • (2006) Proc IEEE Congr. Evolut. Comput , pp. 2529-2534
    • Tan, F.1    Fu, X.2    Zhang, Y.3    Bourgeois, A.G.4
  • 25
    • 34548758629 scopus 로고    scopus 로고
    • A genetic algorithm-based method for feature subset selection
    • Tan F, Fu X, Zhang Y, Bourgeois AG. A genetic algorithm-based method for feature subset selection. Soft Comput., 2007, 12(2):111-120.
    • (2007) Soft Comput , vol.12 , Issue.2 , pp. 111-120
    • Tan, F.1    Fu, X.2    Zhang, Y.3    Bourgeois, A.G.4
  • 26
    • 84865161275 scopus 로고    scopus 로고
    • A comparative study of clustering methods for relevant gene selection in microarray data
    • Wyld DC, Zizka J, Nagamalai D (eds) Springer Berlin Heidelberg
    • Sardana M, Agrawal RK. A Comparative Study of Clustering Methods for Relevant Gene Selection in Microarray Data, in: Wyld DC, Zizka J, Nagamalai D (eds). Advances in Computer Science, Engineering & Applications, Springer Berlin Heidelberg, 2012, 166:789-797.
    • (2012) Advances in Computer Science, Engineering & Applications , vol.166 , pp. 789-797
    • Sardana, M.1    Agrawal, R.K.2
  • 27
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz G, Levine E, Domany E. Coupled Two-Way Clustering Analysis of Gene Microarray Data. Proc. Natural Academy of Sciences US, 2000, 97(22):12079-84.
    • (2000) Proc. Natural Academy of Sciences US , vol.97 , Issue.22 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 29
    • 84863889962 scopus 로고    scopus 로고
    • Hybrid approach of data mining techniques, PCA, EDM and SVM for cancer gene feature selection and classification
    • Nakkeeran R, Victoire TAA. Hybrid Approach of Data Mining Techniques, PCA, EDM and SVM for Cancer Gene Feature Selection and Classification. European Journal of Scientific Research, 2012, 79(4):638-652.
    • (2012) European Journal of Scientific Research , vol.79 , Issue.4 , pp. 638-652
    • Nakkeeran, R.1    Taa, V.2
  • 30
    • 84862823682 scopus 로고    scopus 로고
    • SVM-T-RFE: A novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles
    • Li X, Peng S, Chen J, Lü B, Zhang H, Lai M. SVM-T-RFE: A novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles. Biochem. Biophys. Res. Commun., 2012, 419(2):148-153.
    • (2012) Biochem. Biophys. Res. Commun , vol.419 , Issue.2 , pp. 148-153
    • Li, X.1    Peng, S.2    Chen, J.3    Lü, B.4    Zhang, H.5    Lai, M.6
  • 31
    • 84881563480 scopus 로고    scopus 로고
    • Hybrid correlation based gene selection for accurate cancer classification of gene expression data
    • Singh VP, Arvind SG, Mahapatra AG. Hybrid Correlation based Gene Selection for Accurate Cancer Classification of Gene Expression Data. International Journal of Computer Applications, 2012, 43(14):13-18.
    • (2012) International Journal of Computer Applications , vol.43 , Issue.14 , pp. 13-18
    • Singh, V.P.1    Arvind, S.G.2    Mahapatra, A.G.3
  • 33
    • 0035810997 scopus 로고    scopus 로고
    • Recursive partitioning for tumor classification with gene expression microarray data
    • Zhang H, Yu CY, Singer B, Xiong M. Recursive partitioning for tumor classification with gene expression microarray data. Proc. Natl Acad. Sci USA., 2001, 98(12):6730-5.
    • (2001) Proc. Natl Acad. Sci USA , vol.98 , Issue.12 , pp. 6730-6735
    • Zhang, H.1    Yu, C.Y.2    Singer, B.3    Xiong, M.4
  • 35
    • 84881264092 scopus 로고    scopus 로고
    • Comparison of the C4.5 and a naive bayes classifier for the prediction of lung cancer survivability
    • Dimitoglou G, Adams JA, Jim CM. Comparison of the C4.5 and a Naive Bayes Classifier for the Prediction of Lung Cancer Survivability. CoRR, 2012, 4(8):1-9.
    • (2012) CoRR , vol.4 , Issue.8 , pp. 1-9
    • Dimitoglou, G.1    Adams, J.A.2    Jim, C.M.3
  • 36
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan AC, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics, 2003, 2(3):75-83.
    • (2003) Applied Bioinformatics , vol.2 , Issue.3 , pp. 75-83
    • Tan, A.C.1    Gilbert, D.2
  • 37
    • 80051543967 scopus 로고    scopus 로고
    • Suite of decision tree-based classification algorithms on cancer gene expression data
    • Snousy MBA, El-Deeb HM, Badran K, Khlil IAA. Suite of decision tree-based classification algorithms on cancer gene expression data. Egyptian Informatics Journal, 2011, 12(2):73-82.
    • (2011) Egyptian Informatics Journal , vol.12 , Issue.2 , pp. 73-82
    • Mba, S.1    El-Deeb, H.M.2    Badran, K.3    Iaa, K.4
  • 38
    • 84861730860 scopus 로고    scopus 로고
    • Random forests for genomic data analysis
    • Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012, 99(6):323-9.
    • (2012) Genomics , vol.99 , Issue.6 , pp. 323-329
    • Chen, X.1    Ishwaran, H.2
  • 42
    • 0034575854 scopus 로고    scopus 로고
    • Application of K-nearest neighbors algorithm on breast cancer diagnosis problem
    • Sarkar M, Leong TY. Application of K-nearest neighbors algorithm on breast cancer diagnosis problem. Proc. AMIA Symp., 2000, 759-763.
    • (2000) Proc. AMIA Symp , pp. 759-763
    • Sarkar, M.1    Leong, T.Y.2
  • 44
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 2004, 20(15):2429-37.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 45
    • 84863018859 scopus 로고    scopus 로고
    • Multicategory classification using support vector machine for microarray gene expression cancer diagnosis
    • Baboo SS, Sasikala S. Multicategory Classification Using Support Vector Machine for Microarray Gene Expression Cancer Diagnosis. Global Journal of Computer Science and Technology, 2010, 10(15):38-44.
    • (2010) Global Journal of Computer Science and Technology , vol.10 , Issue.15 , pp. 38-44
    • Baboo, S.S.1    Sasikala, S.2
  • 48
    • 84866874915 scopus 로고    scopus 로고
    • Biogeography-based informative gene selection and cancer classification using SVM and random forests
    • Nikumbh S, Ghosh S, Jayaraman V. Biogeography-Based Informative Gene Selection and Cancer Classification Using SVM and Random Forests. IEEE World Congress on Computational Intelligence, 2012, 10-15.
    • (2012) IEEE World Congress on Computational Intelligence , pp. 10-15
    • Nikumbh, S.1    Ghosh, S.2    Jayaraman, V.3
  • 49
    • 0742271707 scopus 로고    scopus 로고
    • Cancer recognition with bagged ensembles of support vector machines
    • Valentini G, Muselli M, Ruffino F. Cancer recognition with bagged ensembles of support vector machines. Neurocomputing, 2004, 56:461-466.
    • (2004) Neurocomputing , vol.56 , pp. 461-466
    • Valentini, G.1    Muselli, M.2    Ruffino, F.3
  • 50
    • 68949157380 scopus 로고    scopus 로고
    • Robustness and regularization of support vector machines
    • Xu H, Caramanis C, Mannor S. Robustness and regularization of support vector machines. J. Mach. Learn. Res., (2009), 10:1485-1510.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1485-1510
    • Xu, H.1    Caramanis, C.2    Mannor, S.3
  • 53
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • Xiong M, Fang Z, Zhao J. Biomarker Identification by Feature Wrappers. Genome Research, 2001, 11:1878-1887.
    • (2001) Genome Research , vol.11 , pp. 1878-1887
    • Xiong, M.1    Fang, Z.2    Zhao, J.3
  • 54
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics, 2010, 26(3):392-8.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van De Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 55
    • 80053918061 scopus 로고    scopus 로고
    • Identifying cancer biomarkers by networkconstrained support vector machines
    • Chen L, Xuan J, Riggins RB, Clarke R, Wang Y. Identifying cancer biomarkers by networkconstrained support vector machines. BMC Syst Biol., 2011, 5:161.
    • (2011) BMC Syst Biol , vol.5 , pp. 161
    • Chen, L.1    Xuan, J.2    Riggins, R.B.3    Clarke, R.4    Wang, Y.5
  • 56
    • 20744448405 scopus 로고    scopus 로고
    • Multiclass cancer classification and biomarker discovery using GA-based algorithms
    • Liu JJ, Cutler G, Li W, Pan Z, Peng S, Hoey T, Chen L, Ling XB. Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics, 2005, 21(11):2691-97.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2691-2697
    • Liu, J.J.1    Cutler, G.2    Li, W.3    Pan, Z.4    Peng, S.5    Hoey, T.6    Chen, L.7    Ling, X.B.8
  • 58
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2005, 34(2):113-27.
    • (2005) Artif Intell Med , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 61
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RreliefF
    • Robnik-Sikonja M, Kononenko I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn., 2003, 53:23-69.
    • (2003) Mach. Learn , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 62
    • 17444397485 scopus 로고    scopus 로고
    • Neural vs statistical classifier in conjunction with genetic algorithm based feature selection
    • Zhang P, Verma B, Kumar K. Neural Vs Statistical Classifier in Conjunction with Genetic Algorithm Based Feature Selection. J. Patt. Recog Lett., 2005, 26:909-919.
    • (2005) J. Patt. Recog Lett , vol.26 , pp. 909-919
    • Zhang, P.1    Verma, B.2    Kumar, K.3
  • 63
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM : A library for support vector machines
    • Software available at
    • Chang CC, Lin CJ. LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2011) ACM Transactions on Intelligent Systems and Technology , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 64
    • 71749108850 scopus 로고    scopus 로고
    • Classification and biomarker identification using gene network modules and support vector machines
    • Yousef M, Ketany M, Manevitz L, Showe LC, Showe MK. Classification and biomarker identification using gene network modules and support vector machines. BMC Bioinformatics, 2009, 10:337.
    • (2009) BMC Bioinformatics , vol.10 , pp. 337
    • Yousef, M.1    Ketany, M.2    Manevitz, L.3    Showe, L.C.4    Showe, M.K.5
  • 65
    • 80053388081 scopus 로고    scopus 로고
    • A genetic algorithm for optimizing subnetwork markers for the study of breast cancer metastasis
    • Wu J, Gan M, Jiang R. A Genetic Algorithm for Optimizing Subnetwork Markers for the Study of Breast Cancer Metastasis. Natural Computation (ICNC), 2011, 3:1578-82.
    • (2011) Natural Computation (ICNC) , vol.3 , pp. 1578-1582
    • Wu, J.1    Gan, M.2    Jiang, R.3
  • 66
    • 84863661862 scopus 로고    scopus 로고
    • Identification of biomarkers in breast cancer metastasis by integrating proteinprotein interaction network and gene expression data
    • Jahid MJ, Ruan J. Identification of biomarkers in breast cancer metastasis by integrating proteinprotein interaction network and gene expression data. Genomic Signal Processing and Statistics (GENSIPS), 2011, 60-63.
    • (2011) Genomic Signal Processing and Statistics (GENSIPS) , pp. 60-63
    • Jahid, M.J.1    Ruan, J.2
  • 67
    • 0027742295 scopus 로고
    • The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer
    • Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Gather J, Kane M, Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 1993, 75(5):1027-38.
    • (1993) Cell , vol.75 , Issue.5 , pp. 1027-1038
    • Fishel, R.1    Lescoe, M.K.2    Rao, M.R.3    Copeland, N.G.4    Jenkins, N.A.5    Gather, J.6    Kane, M.7    Kolodner, R.8
  • 68
    • 73949090072 scopus 로고    scopus 로고
    • CLU and colon cancer. The dual face of CLU: From normal to malignant phenotype
    • Mazzarelli P, Pucci S, Spagnoli LG. CLU and colon cancer. The dual face of CLU: from normal to malignant phenotype. Adv Cancer Res., 2009, 105:45-61.
    • (2009) Adv Cancer Res , vol.105 , pp. 45-61
    • Mazzarelli, P.1    Pucci, S.2    Spagnoli, L.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.