메뉴 건너뛰기




Volumn 12, Issue 2, 2008, Pages 111-120

A genetic algorithm-based method for feature subset selection

Author keywords

Feature selection; Gene Selection; Genetic algorithm; Microarray gene expression data analysis

Indexed keywords

DATA PROCESSING; GENE EXPRESSION; GENETIC ALGORITHMS; LEARNING ALGORITHMS; MICROARRAYS;

EID: 34548758629     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-007-0193-8     Document Type: Conference Paper
Times cited : (217)

References (31)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745-6750
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 2
    • 34548777815 scopus 로고    scopus 로고
    • Technical Report. Stat. Dept, UCB
    • Breiman L, Forest R Technical Report. Stat. Dept, UCB
    • Breiman, L.1    Forest, R.2
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data mining Knowl Dis 2(2):121-167
    • (1998) Data Mining Knowl Dis , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5:845-889
    • (2004) J Mach Learn Res , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 7
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T, Cristianini N, Bednarski DN, Schummer DM (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Bednarski, D.N.3    Schummer, D.M.4
  • 8
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR et al (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286
    • (1999) Science , vol.286
    • Golub, T.R.1
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection (Kernel Machines Section)
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection (Kernel Machines Section). JMLR 3:1157-1182
    • (2003) JMLR , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389-422
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • Jirapech-Umpai T, Aitken S (2005) Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes. BMC Bioinform 6:148
    • (2005) BMC Bioinform , vol.6 , pp. 148
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 15
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu Y (2004) A comparative study on feature selection methods for drug discovery. J Chem Inform Comput Sci 44(5):1823-1828
    • (2004) J Chem Inform Comput Sci , vol.44 , Issue.5 , pp. 1823-1828
    • Liu, Y.1
  • 17
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern
    • Liu H, Li J, Wong L (2002) A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern. Genom Inform 13:51-60
    • (2002) Genom Inform , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 18
    • 30344453044 scopus 로고    scopus 로고
    • Evolving feature selection. Intelligent systems
    • Liu H et al. (2005) Evolving feature selection. Intelligent systems. IEEE Vol 20(6): 64-76
    • (2005) IEEE Vol , vol.20 , Issue.6 , pp. 64-76
    • Liu, H.1
  • 19
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • Liu X, Krishnan A, Mondry A (2005) An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinform 6:76
    • (2005) BMC Bioinform , vol.6 , pp. 76
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 20
    • 27744481181 scopus 로고    scopus 로고
    • Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection
    • Mao Y, Zhou X, Pi D, Sun Y, STC Wong (2005) Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. J Biomed Biotechnol 2:160-171
    • (2005) J Biomed Biotechnol , vol.2 , pp. 160-171
    • Mao, Y.1    Zhou, X.2    Pi, D.3    Sun, Y.4    Wong, S.T.C.5
  • 21
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • In: Schoelkopf B, suda KT, Vert J.-P (eds). MIT, New York
    • Noble WS (2004) Support vector machine applications in computational biology. In: Schoelkopf B, suda KT, Vert J.-P (eds). Kernel methods in computational biology. MIT, New York, pp 71-92
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Noble, W.S.1
  • 22
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Patt Anal Mach Intell 27(8):1226-1238
    • (2005) IEEE Trans Patt Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 23
  • 24
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203-209
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 25
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203-209
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 26
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • Somorjai RL, Dolenko B, Baumgartner R (2003) Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics. 12; 19(12):1484-91
    • (2003) Bioinformatics , vol.12-19 , Issue.12 , pp. 484-491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 27
    • 34548715503 scopus 로고    scopus 로고
    • Space Physics Group; Johns Hopkins University; Johns Hopkins Road; Laurel; MD 20723
    • Space Physics Group; Applied Physics Laboratory; Johns Hopkins University; Johns Hopkins Road; Laurel; MD 20723
    • Applied Physics Laboratory
  • 29
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. IEEE Intell Syst 13:44-49
    • (1998) IEEE Intell Syst , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.