메뉴 건너뛰기




Volumn 12, Issue SUPPL. 5, 2011, Pages

Gene selection and classification for cancer microarray data based on machine learning and similarity measures

Author keywords

Classification; Gene selection; Microarray; Similarity; Supervised learning

Indexed keywords

ACCURACY; ARTICLE; BAYESIAN LEARNING; CANCER GENETICS; CLASSIFICATION ALGORITHM; CLASSIFIER; CONTROLLED STUDY; GENE CLASSIFICATION; GENE EXPRESSION; GENE SELECTION; GENOMICS; INTERMETHOD COMPARISON; LAGGING PREDICTION PEEPHOLE OPTIMIZATION ALGORITHM; LEAVE ONE OUT CALCULATION SEQUENTIAL FORWARD SELECTION; MACHINE LEARNING; MICROARRAY ANALYSIS; NEAREST MEAN SCALED CLASSIFER; PREDICTION; RANDOM FOREST; RECURSIVE FEATURE ADDITION; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE; SUPPORT VECTOR MACHINE RECURSIVE FEATURE ELIMINATION; ARTIFICIAL INTELLIGENCE; DNA MICROARRAY; GENETICS; HUMAN; METABOLISM; NEOPLASM;

EID: 84255194463     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/1471-2164-12-S5-S1     Document Type: Article
Times cited : (53)

References (38)
  • 1
    • 33847288899 scopus 로고    scopus 로고
    • A distribution free summarization method for Affymetrix GeneChip Arrays
    • 10.1093/bioinformatics/btl609, 17148508
    • Chen Z, McGee M, Liu Q, Scheuermann RH. A distribution free summarization method for Affymetrix GeneChip Arrays. Bioinformatics 2007, 23(3):321-327. 10.1093/bioinformatics/btl609, 17148508.
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 321-327
    • Chen, Z.1    McGee, M.2    Liu, Q.3    Scheuermann, R.H.4
  • 2
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • 10.1038/35076576, 11389458
    • Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001, 2(6):418-427. 10.1038/35076576, 11389458.
    • (2001) Nat Rev Genet , vol.2 , Issue.6 , pp. 418-427
    • Quackenbush, J.1
  • 3
    • 27744581052 scopus 로고    scopus 로고
    • Finding groups in gene expression data
    • Hand DJ, Heard NA. Finding groups in gene expression data. J Biomed Biotechnol 2005, (2):215-225.
    • (2005) J Biomed Biotechnol , Issue.2 , pp. 215-225
    • Hand, D.J.1    Heard, N.A.2
  • 4
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: understanding cancer using microarrays
    • Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet 2005, 37(Suppl):S38-45.
    • (2005) Nat Genet , vol.37 , Issue.SUPPL
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 5
    • 27744459345 scopus 로고    scopus 로고
    • A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings
    • 10.1093/bioinformatics/bti644, 16141251
    • Torrente A, Kapushesky M, Brazma A. A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings. Bioinformatics 2005, 21(21):3993-3999. 10.1093/bioinformatics/bti644, 16141251.
    • (2005) Bioinformatics , vol.21 , Issue.21 , pp. 3993-3999
    • Torrente, A.1    Kapushesky, M.2    Brazma, A.3
  • 6
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted Chinese restaurant process
    • 10.1093/bioinformatics/btl284, 16766561
    • Qin Z. Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 2006, 22(16):1988-1997. 10.1093/bioinformatics/btl284, 16766561.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1988-1997
    • Qin, Z.1
  • 8
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data
    • 10.1089/106652701300099074, 11339905
    • Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW. On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 2001, 8(1):37-52. 10.1089/106652701300099074, 11339905.
    • (2001) J Comput Biol , vol.8 , Issue.1 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 9
    • 0035827588 scopus 로고    scopus 로고
    • Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework
    • Long A, Mangalam H, Chan B, Tolleri L, Hatfield G, Baldi P. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. J Biol Chem 276(23):19937-19944.
    • J Biol Chem , vol.276 , Issue.23 , pp. 19937-19944
    • Long, A.1    Mangalam, H.2    Chan, B.3    Tolleri, L.4    Hatfield, G.5    Baldi, P.6
  • 10
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • 115205, 11983058
    • Bo T, Jonassen I. New feature subset selection procedures for classification of expression profiles. Genome Biol 2002, 3(4):research0017. 115205, 11983058.
    • (2002) Genome Biol , vol.3 , Issue.4
    • Bo, T.1    Jonassen, I.2
  • 11
    • 29144508692 scopus 로고    scopus 로고
    • Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data
    • 10.1093/bioinformatics/bti1030, 15961495
    • Yu J, Chen X-W. Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data. Bioinformatics 2005, 21(suppl 1):i487-i494. 10.1093/bioinformatics/bti1030, 15961495.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Yu, J.1    Chen, X.-.W.2
  • 12
    • 0035228759 scopus 로고    scopus 로고
    • Analysis of strain and regional variation in gene expression in mouse brain
    • Pavlidis P, Noble WS. Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol 2001, 2(10):0042.1-0042.15.
    • (2001) Genome Biol , vol.2 , Issue.10
    • Pavlidis, P.1    Noble, W.S.2
  • 13
    • 0036450130 scopus 로고    scopus 로고
    • Gene selection by sequential search wrapper approaches in microarray cancer class prediction
    • Inza I, Sierra B, Blanco R, Larranaga P. Gene selection by sequential search wrapper approaches in microarray cancer class prediction. Journal of Intelligent and Fuzzy Systems 2002, 12(1):25-33.
    • (2002) Journal of Intelligent and Fuzzy Systems , vol.12 , Issue.1 , pp. 25-33
    • Inza, I.1    Sierra, B.2    Blanco, R.3    Larranaga, P.4
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik VN. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(19):389-422.
    • (2002) Machine Learning , vol.46 , Issue.19 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 15
    • 34548017677 scopus 로고    scopus 로고
    • Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images
    • Liu Q, Sung AH, Chen Z, Xu J. Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images. Pattern Recognition 2008, 41(1):56-66.
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 56-66
    • Liu, Q.1    Sung, A.H.2    Chen, Z.3    Xu, J.4
  • 17
    • 0034332411 scopus 로고    scopus 로고
    • Withdrawing an example from the training set: an analytic estimation of its effect on a nonlinear parameterized model
    • Monari G, Dreyfus G. Withdrawing an example from the training set: an analytic estimation of its effect on a nonlinear parameterized model. Neurocomputing 2000, 35(1-4):195-201.
    • (2000) Neurocomputing , vol.35 , Issue.1-4 , pp. 195-201
    • Monari, G.1    Dreyfus, G.2
  • 18
    • 0346825283 scopus 로고    scopus 로고
    • MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for nonlinear modeling
    • Rivals I, Personnaz L. MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for nonlinear modeling. Journal of Machine Learning Research 2003, 3:1383-1398.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1383-1398
    • Rivals, I.1    Personnaz, L.2
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soc B 1996, 58(1):267-288.
    • (1996) J Royal Statist Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3, 9044528
    • Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med 1997, 16(4):385-395. 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3, 9044528.
    • (1997) Stat Med , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 22
    • 17444368679 scopus 로고    scopus 로고
    • LS bound based gene selection for DNA microarray data
    • 10.1093/bioinformatics/bti216, 15598834
    • Zhou X, Mao K-Z. LS bound based gene selection for DNA microarray data. Bioinformatics 2005, 21(8):1559-1564. 10.1093/bioinformatics/bti216, 15598834.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1559-1564
    • Zhou, X.1    Mao, K.-.Z.2
  • 23
    • 33645157313 scopus 로고    scopus 로고
    • Gene selection algorithms for microarray data based on least square support vector machine
    • 10.1186/1471-2105-7-95, 1409801, 16504159
    • Tang E-K, Suganthan PN, Yao X. Gene selection algorithms for microarray data based on least square support vector machine. BMC Bioinformatics 2006, 7:95. 10.1186/1471-2105-7-95, 1409801, 16504159.
    • (2006) BMC Bioinformatics , vol.7 , pp. 95
    • Tang, E.-.K.1    Suganthan, P.N.2    Yao, X.3
  • 24
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • 10.1186/1471-2105-7-3, 1363357, 16398926
    • Diaz-Uriarte R, de Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006, 7:3. 10.1186/1471-2105-7-3, 1363357, 16398926.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    de Andres, S.A.2
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 27
    • 77949506233 scopus 로고    scopus 로고
    • Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data
    • 10.1371/journal.pone.0008250, 2789385, 20011240
    • Liu Q, Sung AH, Chen Z, Liu J, Huang X, Deng Y. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data. PLoS One 2009, 4(12):e8250. 10.1371/journal.pone.0008250, 2789385, 20011240.
    • (2009) PLoS One , vol.4 , Issue.12
    • Liu, Q.1    Sung, A.H.2    Chen, Z.3    Liu, J.4    Huang, X.5    Deng, Y.6
  • 29
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • 10.1093/bioinformatics/bth383, 15231531
    • Pochet N, De Smet F, Suykens J, De Moor B. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 2004, 20(17):3185-3195. 10.1093/bioinformatics/bth383, 15231531.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.3    De Moor, B.4
  • 30
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A, Wiener M. Classification and regression by random forest. R News 2(3):18-22.
    • R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 31
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1(2):227-235.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 227-235
    • Singh, D.1
  • 32
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression
    • 10.1126/science.286.5439.531, 10521349
    • Golub T, et al. Molecular classification of cancer: class discovery and class prediction by gene expression. Science 1999, 286(5439):531-537. 10.1126/science.286.5439.531, 10521349.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1
  • 33
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning
    • 10.1038/nm0102-68, 11786909
    • Shipp M, et al. Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning. Nat Med 2002, 8(1):68-74. 10.1038/nm0102-68, 11786909.
    • (2002) Nat Med , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.1
  • 34
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • 10.1073/pnas.96.12.6745, 21986, 10359783
    • Alon U, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 1999, 96(12):6745-6750. 10.1073/pnas.96.12.6745, 21986, 10359783.
    • (1999) Proc Natl Acad Sci USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1
  • 35
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumor outcome based on gene expression
    • 10.1038/415436a, 11807556
    • Pomeroy SL, et al. Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature 2002, 415:436-442. 10.1038/415436a, 11807556.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1
  • 36
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • 10.1038/415530a, 11823860
    • Van LJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415:530-536. 10.1038/415530a, 11823860.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van, L.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.