메뉴 건너뛰기




Volumn 20, Issue 1, 2000, Pages 59-75

Machine learning for survival analysis: A case study on recurrence of prostate cancer

Author keywords

Censored data; Data weighting; Machine learning; Outcome prediction after radical prostatectomy; Prognostic models in medicine; Prostate cancer recurrence; Survival analysis

Indexed keywords

DATA STRUCTURES; HOSPITAL DATA PROCESSING; LEARNING SYSTEMS; MATHEMATICAL MODELS; ONCOLOGY; PROBABILITY DISTRIBUTIONS; STATISTICAL METHODS;

EID: 0343081009     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(00)00053-1     Document Type: Article
Times cited : (103)

References (25)
  • 3
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L, et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 1998.
    • (1998) Stat Med
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3
  • 4
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • Burke H.B., Goodman P.H., Rosen D.B. et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 97(4):1997;857-862.
    • (1997) Cancer , vol.97 , Issue.4 , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3
  • 6
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • Cox D.R. Regression models and life-tables. J. R. Stat. Soc. B. 34:1972;187-220.
    • (1972) J. R. Stat. Soc. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 7
    • 0002012475 scopus 로고    scopus 로고
    • Prognostic factors and outcomes
    • In: Vogelzang NJ, Scardino PT, Shipley WU, Coffey DS, editors Lippincott William & Wilkins, Baltimore, MD, (in press)
    • D'Amico AV, Moul J, Kattan MW. Prognostic factors and outcomes. In: Vogelzang NJ, Scardino PT, Shipley WU, Coffey DS, editors. Comprehensive Textbook of Genitourinary Oncology. Lippincott William & Wilkins, Baltimore, MD, 2000 (in press).
    • (2000) Comprehensive Textbook of Genitourinary Oncology
    • D'Amico, A.V.1    Moul, J.2    Kattan, M.W.3
  • 8
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi D., Simon R. A neural network model for survival data. Stat. Med. 14(1):1995;73-82.
    • (1995) Stat. Med. , vol.14 , Issue.1 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 9
    • 0020083498 scopus 로고
    • The meaning and use of the area under receiver operating characteristic curve
    • Hanley J.A., McNeil B.J. The meaning and use of the area under receiver operating characteristic curve. Radiology. 143:1982;29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 11
    • 0032550753 scopus 로고    scopus 로고
    • A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer
    • Kattan M.W., Eastham J.A., Stapleton A.M., Wheeler T.M., Scardino P.T. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J. Natl. Cancer Inst. 90(10):1998;766-771.
    • (1998) J. Natl. Cancer Inst. , vol.90 , Issue.10 , pp. 766-771
    • Kattan, M.W.1    Eastham, J.A.2    Stapleton, A.M.3    Wheeler, T.M.4    Scardino, P.T.5
  • 12
    • 0031731379 scopus 로고    scopus 로고
    • Experiments to determine whether recursive partitioning (cart) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
    • Kattan M.W., Hess K.R., Beck J.R. Experiments to determine whether recursive partitioning (cart) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression. Comput. Biomed. Res. 31(5):1998;363-373.
    • (1998) Comput. Biomed. Res. , vol.31 , Issue.5 , pp. 363-373
    • Kattan, M.W.1    Hess, K.R.2    Beck, J.R.3
  • 14
    • 0032950295 scopus 로고    scopus 로고
    • Postoperative nomogram for disease recurrence alter radical prostatectomy for prostate cancer
    • Kattan M.W., Wheeler T.M., Scardino P.T. Postoperative nomogram for disease recurrence alter radical prostatectomy for prostate cancer. J. Clin. Oncol. 17(5):1999;1499-1507.
    • (1999) J. Clin. Oncol. , vol.17 , Issue.5 , pp. 1499-1507
    • Kattan, M.W.1    Wheeler, T.M.2    Scardino, P.T.3
  • 17
    • 0018179241 scopus 로고
    • A practical device for the application of a diagnostic or prognostic function
    • Lubsen J., Pool J., van der Does E. A practical device for the application of a diagnostic or prognostic function. Methods Inf. Med. 17:1978;127-129.
    • (1978) Methods Inf. Med. , vol.17 , pp. 127-129
    • Lubsen, J.1    Pool, J.2    Van Der Does, E.3
  • 18
    • 0344457318 scopus 로고    scopus 로고
    • Prognostic methods in medicine
    • (editorial)
    • Lucas P.J.F., Abu-Hanna A. Prognostic methods in medicine. Artif. Intell. Med. 15(2):1999;105-119. (editorial).
    • (1999) Artif. Intell. Med. , vol.15 , Issue.2 , pp. 105-119
    • Lucas, P.J.F.1    Abu-Hanna, A.2
  • 19
    • 0003612091 scopus 로고
    • D. Michie, D.J. Spiegelhalter, & C.C. Taylor. Chichester, UK: Ellis Horwood
    • Michie D., Spiegelhalter D.J., Taylor C.C. Machine Learning, Neural and Statistical Classification. 1994;Ellis Horwood, Chichester, UK.
    • (1994) Machine Learning, Neural and Statistical Classification
  • 20
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • Cambridge University Press, Cambridge
    • Niblett T, Bratko I. Learning decision rules in noisy domains. In: Expert Systems 86 (ProcEWSL Brighton). Cambridge University Press, Cambridge, 1986, pp. 15-18.
    • (1986) In: Expert Systems 86 (ProcEWSL Brighton) , pp. 15-18
    • Niblett, T.1    Bratko, I.2
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan R. Induction of decision trees. Mach. Learn. 1(1):1986;81-106.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, R.1
  • 22
    • 0011827330 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • In: Dybowski R, Gant V, editors Landes Biosciences
    • Ripley BD, Ripley RM. Neural networks as statistical methods in survival analysis. In: Dybowski R, Gant V, editors. Artificial Neural Networks: Prospects for Medicine. Landes Biosciences, 1998.
    • (1998) Artificial Neural Networks: Prospects for Medicine
    • Ripley, B.D.1    Ripley, R.M.2
  • 23
    • 0028148549 scopus 로고
    • Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
    • Snow P.B., Smith D.S., Catalona W.J. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol. 152(5 Pt 2):1994;1923-1926.
    • (1994) J. Urol. , vol.152 , Issue.5 PT 2 , pp. 1923-1926
    • Snow, P.B.1    Smith, D.S.2    Catalona, W.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.