-
1
-
-
0342907215
-
Using censored neighbours in prognostication
-
Aalborg, Denmark, June
-
Anand SS, Hughes JG, Bell DA, Hamilton PW. Using censored neighbours in prognostication. In: Working Notes of the AIMDM-99 Workshop on Prognostic Models in Medicine: Artificial Intelligence and Decision Analytic Approaches, Aalborg, Denmark, June 1999, pp. 15-19.
-
(1999)
In: Working Notes of the AIMDM-99 Workshop on Prognostic Models in Medicine: Artificial Intelligence and Decision Analytic Approaches
, pp. 15-19
-
-
Anand, S.S.1
Hughes, J.G.2
Bell, D.A.3
Hamilton, P.W.4
-
2
-
-
0033082740
-
An evaluation of intelligent prognostic systems for colorectal cancer
-
Anand S.S., Smith A.E., Hamilton P.W., Anand J.S., Hughes J.G., Bartels P.H. An evaluation of intelligent prognostic systems for colorectal cancer. Artif. Intell. Med. 15(2):1999;193-214.
-
(1999)
Artif. Intell. Med.
, vol.15
, Issue.2
, pp. 193-214
-
-
Anand, S.S.1
Smith, A.E.2
Hamilton, P.W.3
Anand, J.S.4
Hughes, J.G.5
Bartels, P.H.6
-
3
-
-
0031921607
-
Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
-
Biganzoli E, Boracchi P, Mariani L, et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 1998.
-
(1998)
Stat Med
-
-
Biganzoli, E.1
Boracchi, P.2
Mariani, L.3
-
4
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Burke H.B., Goodman P.H., Rosen D.B. et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 97(4):1997;857-862.
-
(1997)
Cancer
, vol.97
, Issue.4
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
-
6
-
-
0000336139
-
Regression models and life-tables
-
Cox D.R. Regression models and life-tables. J. R. Stat. Soc. B. 34:1972;187-220.
-
(1972)
J. R. Stat. Soc. B
, vol.34
, pp. 187-220
-
-
Cox, D.R.1
-
7
-
-
0002012475
-
Prognostic factors and outcomes
-
In: Vogelzang NJ, Scardino PT, Shipley WU, Coffey DS, editors Lippincott William & Wilkins, Baltimore, MD, (in press)
-
D'Amico AV, Moul J, Kattan MW. Prognostic factors and outcomes. In: Vogelzang NJ, Scardino PT, Shipley WU, Coffey DS, editors. Comprehensive Textbook of Genitourinary Oncology. Lippincott William & Wilkins, Baltimore, MD, 2000 (in press).
-
(2000)
Comprehensive Textbook of Genitourinary Oncology
-
-
D'Amico, A.V.1
Moul, J.2
Kattan, M.W.3
-
8
-
-
0028855843
-
A neural network model for survival data
-
Faraggi D., Simon R. A neural network model for survival data. Stat. Med. 14(1):1995;73-82.
-
(1995)
Stat. Med.
, vol.14
, Issue.1
, pp. 73-82
-
-
Faraggi, D.1
Simon, R.2
-
9
-
-
0020083498
-
The meaning and use of the area under receiver operating characteristic curve
-
Hanley J.A., McNeil B.J. The meaning and use of the area under receiver operating characteristic curve. Radiology. 143:1982;29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
10
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell F.E., Califf R.M., Pryor D.B., Lee K.L., Rosati R.A. Evaluating the yield of medical tests. J. Am. Med. Assoc. 247(18):1982;2543-2546.
-
(1982)
J. Am. Med. Assoc.
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
11
-
-
0032550753
-
A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer
-
Kattan M.W., Eastham J.A., Stapleton A.M., Wheeler T.M., Scardino P.T. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J. Natl. Cancer Inst. 90(10):1998;766-771.
-
(1998)
J. Natl. Cancer Inst.
, vol.90
, Issue.10
, pp. 766-771
-
-
Kattan, M.W.1
Eastham, J.A.2
Stapleton, A.M.3
Wheeler, T.M.4
Scardino, P.T.5
-
12
-
-
0031731379
-
Experiments to determine whether recursive partitioning (cart) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
-
Kattan M.W., Hess K.R., Beck J.R. Experiments to determine whether recursive partitioning (cart) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression. Comput. Biomed. Res. 31(5):1998;363-373.
-
(1998)
Comput. Biomed. Res.
, vol.31
, Issue.5
, pp. 363-373
-
-
Kattan, M.W.1
Hess, K.R.2
Beck, J.R.3
-
13
-
-
0342472837
-
Applying a neural network to prostate cancer survival data
-
N. Lavrac, E. Keravnou, & B. Zupan. Boston: Kluwer
-
Kattan M.W., Ishida H., Scardino P.T., Beck J.R. Applying a neural network to prostate cancer survival data. Lavrac N., Keravnou E., Zupan B. Intelligent Data Analysis in Medicine and Pharmacology. 1997;295-306 Kluwer, Boston.
-
(1997)
Intelligent Data Analysis in Medicine and Pharmacology
, pp. 295-306
-
-
Kattan, M.W.1
Ishida, H.2
Scardino, P.T.3
Beck, J.R.4
-
14
-
-
0032950295
-
Postoperative nomogram for disease recurrence alter radical prostatectomy for prostate cancer
-
Kattan M.W., Wheeler T.M., Scardino P.T. Postoperative nomogram for disease recurrence alter radical prostatectomy for prostate cancer. J. Clin. Oncol. 17(5):1999;1499-1507.
-
(1999)
J. Clin. Oncol.
, vol.17
, Issue.5
, pp. 1499-1507
-
-
Kattan, M.W.1
Wheeler, T.M.2
Scardino, P.T.3
-
17
-
-
0018179241
-
A practical device for the application of a diagnostic or prognostic function
-
Lubsen J., Pool J., van der Does E. A practical device for the application of a diagnostic or prognostic function. Methods Inf. Med. 17:1978;127-129.
-
(1978)
Methods Inf. Med.
, vol.17
, pp. 127-129
-
-
Lubsen, J.1
Pool, J.2
Van Der Does, E.3
-
18
-
-
0344457318
-
Prognostic methods in medicine
-
(editorial)
-
Lucas P.J.F., Abu-Hanna A. Prognostic methods in medicine. Artif. Intell. Med. 15(2):1999;105-119. (editorial).
-
(1999)
Artif. Intell. Med.
, vol.15
, Issue.2
, pp. 105-119
-
-
Lucas, P.J.F.1
Abu-Hanna, A.2
-
19
-
-
0003612091
-
-
D. Michie, D.J. Spiegelhalter, & C.C. Taylor. Chichester, UK: Ellis Horwood
-
Michie D., Spiegelhalter D.J., Taylor C.C. Machine Learning, Neural and Statistical Classification. 1994;Ellis Horwood, Chichester, UK.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
-
20
-
-
0005801045
-
Learning decision rules in noisy domains
-
Cambridge University Press, Cambridge
-
Niblett T, Bratko I. Learning decision rules in noisy domains. In: Expert Systems 86 (ProcEWSL Brighton). Cambridge University Press, Cambridge, 1986, pp. 15-18.
-
(1986)
In: Expert Systems 86 (ProcEWSL Brighton)
, pp. 15-18
-
-
Niblett, T.1
Bratko, I.2
-
21
-
-
33744584654
-
Induction of decision trees
-
Quinlan R. Induction of decision trees. Mach. Learn. 1(1):1986;81-106.
-
(1986)
Mach. Learn.
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, R.1
-
22
-
-
0011827330
-
Neural networks as statistical methods in survival analysis
-
In: Dybowski R, Gant V, editors Landes Biosciences
-
Ripley BD, Ripley RM. Neural networks as statistical methods in survival analysis. In: Dybowski R, Gant V, editors. Artificial Neural Networks: Prospects for Medicine. Landes Biosciences, 1998.
-
(1998)
Artificial Neural Networks: Prospects for Medicine
-
-
Ripley, B.D.1
Ripley, R.M.2
-
23
-
-
0028148549
-
Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
-
Snow P.B., Smith D.S., Catalona W.J. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol. 152(5 Pt 2):1994;1923-1926.
-
(1994)
J. Urol.
, vol.152
, Issue.5 PT 2
, pp. 1923-1926
-
-
Snow, P.B.1
Smith, D.S.2
Catalona, W.J.3
-
25
-
-
84855619327
-
-
In: Horn W et al. editors, AIMDM-99. Springer
-
Zupan B, Demšar J, Kattan MW, Beck JR, Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. In: Horn W et al. editors, AIMDM-99. Springer, 1999, pp. 346-355.
-
(1999)
Machine Learning for Survival Analysis: A Case Study on Recurrence of Prostate Cancer
, pp. 346-355
-
-
Zupan, B.1
Demšar, J.2
Kattan, M.W.3
Beck, J.R.4
Bratko, I.5
|