메뉴 건너뛰기




Volumn 79, Issue 4, 1997, Pages 857-862

Artificial neural networks improve the accuracy of cancer survival prediction

Author keywords

artificial neural networks; breast carcinoma; clinical trials; colorectal carcinoma; decision making; outcomes; prognostic factors; quality assurance; survival; TNM staging system

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CANCER; CANCER SIZE; CANCER SURVIVAL; COLORECTAL CANCER; EPIDEMIOLOGICAL DATA; HUMAN; MAJOR CLINICAL STUDY; MEDICAL DECISION MAKING; METASTASIS; PRIORITY JOURNAL; PROGNOSIS; QUALITY CONTROL; STATISTICAL MODEL; TREATMENT OUTCOME;

EID: 0031047117     PISSN: 0008543X     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y     Document Type: Article
Times cited : (317)

References (20)
  • 2
    • 0000228325 scopus 로고
    • Breast carcinoma
    • P Hermanek, MK Gospadoriwicz, DE Henson, RVP Hutter, LH Sobin, editors. Berlin: Springer-Verlag
    • Burke HB, Hutter RVP, Henson DE. Breast carcinoma. In: P Hermanek, MK Gospadoriwicz, DE Henson, RVP Hutter, LH Sobin, editors. UICC prognostic factors in cancer. Berlin: Springer-Verlag, 1995: 165-76.
    • (1995) UICC Prognostic Factors in Cancer , pp. 165-176
    • Burke, H.B.1    Hutter, R.V.P.2    Henson, D.E.3
  • 3
    • 0027362788 scopus 로고
    • Criteria for prognostic factors and for an enhanced prognostic system
    • Burke HB, Henson DE. Criteria for prognostic factors and for an enhanced prognostic system. Cancer 1993; 72:3131-5.
    • (1993) Cancer , vol.72 , pp. 3131-3135
    • Burke, H.B.1    Henson, D.E.2
  • 4
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: Outcome prediction
    • Burke HB. Artificial neural networks for cancer research: outcome prediction. Sernin Surg Oncol 1994; 10:1-7.
    • (1994) Sernin Surg Oncol , vol.10 , pp. 1-7
    • Burke, H.B.1
  • 6
    • 0020083498 scopus 로고
    • The meaning of the use of the area under the receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning of the use of the area under the receiver operating characteristic (ROC) curve. Radiology 1982; 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 7
    • 49549139345 scopus 로고
    • The area above the ordinal dominance graph and the area below the receiver operating characteristic
    • Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic. J Math Psy 1975; 12;387-415.
    • (1975) J Math Psy , vol.12 , pp. 387-415
    • Bamber, D.1
  • 8
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medícíne
    • Baxt WG. Application of artificial neural networks to clinical medícíne. Lancet 1995; 346:1135-8.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 9
    • 0028812688 scopus 로고
    • Artificial neural networks in pathology and medical laboratories
    • Dybowski R, Gant V. Artificial neural networks in pathology and medical laboratories. Lancet 1995; 346:1203-7.
    • (1995) Lancet , vol.346 , pp. 1203-1207
    • Dybowski, R.1    Gant, V.2
  • 10
    • 0026620233 scopus 로고
    • Intelligent alarms reduce anesthesiologist's response time to critical faults
    • Westenskow DR, Orr JA, Simon FH. Intelligent alarms reduce anesthesiologist's response time to critical faults. Anesthesiology 1992; 77:1074-9.
    • (1992) Anesthesiology , vol.77 , pp. 1074-1079
    • Westenskow, D.R.1    Orr, J.A.2    Simon, F.H.3
  • 11
    • 0027445437 scopus 로고
    • Acute pulmonary embolism: Artificial neural network approach for diagnosis
    • Tourassi GD, Floyd CE, Sostman HD, Coleman RE. Acute pulmonary embolism: artificial neural network approach for diagnosis. Radiology 1993; 189:555-8.
    • (1993) Radiology , vol.189 , pp. 555-558
    • Tourassi, G.D.1    Floyd, C.E.2    Sostman, H.D.3    Coleman, R.E.4
  • 12
    • 0026757734 scopus 로고
    • MATIC: An intracardiac tachycardia classification system
    • Leong PH, Jabri MA. MATIC: an intracardiac tachycardia classification system. Pacing Clin Electrophysiol 1992; 15:1317-31.
    • (1992) Pacing Clin Electrophysiol , vol.15 , pp. 1317-1331
    • Leong, P.H.1    Jabri, M.A.2
  • 13
    • 0026675081 scopus 로고
    • Automated interictal EEG spike detection using artificial neural networks
    • Gabor AJ, Seyal M. Automated interictal EEG spike detection using artificial neural networks. Electroencephalogr Clin Neurophysiol 1992; 83: 271-80.
    • (1992) Electroencephalogr Clin Neurophysiol , vol.83 , pp. 271-280
    • Gabor, A.J.1    Seyal, M.2
  • 14
    • 0026483164 scopus 로고
    • Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence
    • Goldberg V, Manduca A, Ewert DL. Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence. Med Phys 1992; 19:1275-81.
    • (1992) Med Phys , vol.19 , pp. 1275-1281
    • Goldberg, V.1    Manduca, A.2    Ewert, D.L.3
  • 15
    • 0026885478 scopus 로고
    • Computer-assisted image interpretation: Use of a neural network to differentiate tubular carcinoma from sclerosing adenosis
    • O'Leary TJ, Mikel UV, Backer RL. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Mod Pathol 1992; 5:402-5.
    • (1992) Mod Pathol , vol.5 , pp. 402-405
    • O'Leary, T.J.1    Mikel, U.V.2    Backer, R.L.3
  • 16
    • 0025730090 scopus 로고
    • Nuclear grading of breast carcinoma by image analysis
    • Dawson AE, Austin RE, Weinberg DS. Nuclear grading of breast carcinoma by image analysis. J Clin Pathol 1991; 95(Suppl):S29-S37.
    • (1991) J Clin Pathol , vol.95 , Issue.SUPPL.
    • Dawson, A.E.1    Austin, R.E.2    Weinberg, D.S.3
  • 17
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 1993; 187:81-7.
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 18
    • 0026580903 scopus 로고
    • Application of neural networks to the interpretation of laboratory data in cancer diagnosis
    • Astin ML, Wilding P. Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clin Chem 1992; 38:34-8.
    • (1992) Clin Chem , vol.38 , pp. 34-38
    • Astin, M.L.1    Wilding, P.2
  • 19
    • 0028576841 scopus 로고
    • Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents
    • von Osdol W, Myers TG, Paull KD, Kohn KW, Weinstein JN. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J Natl Cancer Inst 1994; 86:1853-9.
    • (1994) J Natl Cancer Inst , vol.86 , pp. 1853-1859
    • Von Osdol, W.1    Myers, T.G.2    Paull, K.D.3    Kohn, K.W.4    Weinstein, J.N.5
  • 20
    • 84902141410 scopus 로고
    • Comparing the prediction accuracy of artificial neural networks and other statistical models for breast cancer survival
    • Tesauro G, Touretzky DS, Leen TK, editors. Cambridge, MA: MIT Press
    • Burke HB, Rosen DB, Goodman PH. Comparing the prediction accuracy of artificial neural networks and other statistical models for breast cancer survival. In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems 7. Cambridge, MA: MIT Press, 1995: 1063-7.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 1063-1067
    • Burke, H.B.1    Rosen, D.B.2    Goodman, P.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.