-
1
-
-
67349137868
-
Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents
-
Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta 2009;1790:702-17.
-
(2009)
Biochim Biophys Acta
, vol.1790
, pp. 702-717
-
-
Richardson, D.R.1
Kalinowski, D.S.2
Lau, S.3
Jansson, P.J.4
Lovejoy, D.B.5
-
2
-
-
2542504483
-
Structure, function, and mechanism of ribonucleotide reductases
-
Kolberg M, Strand KR, Graff P, Andersson KK. Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta 2004;1699:1-34.
-
(2004)
Biochim Biophys Acta
, vol.1699
, pp. 1-34
-
-
Kolberg, M.1
Strand, K.R.2
Graff, P.3
Andersson, K.K.4
-
4
-
-
79953305717
-
Class i ribonucleotide reductases: Metallocofactor assembly and repair in vitro and in vivo
-
Cotruvo JA, Stubbe J. Class I ribonucleotide reductases: Metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem 2011;80:733-67.
-
(2011)
Annu Rev Biochem
, vol.80
, pp. 733-767
-
-
Cotruvo, J.A.1
Stubbe, J.2
-
5
-
-
0030813561
-
Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae
-
Huang M, Elledge SJ. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 1997;17:6105-13.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 6105-6113
-
-
Huang, M.1
Elledge, S.J.2
-
6
-
-
0030756302
-
Rnr4p, a novel ribonucleotide reductase small-subunit protein
-
Wang PJ, Chabes A, Casagrande R, Tian XC, Thelander L, Huffaker TC. Rnr4p, a novel ribonucleotide reductase small-subunit protein. Mol Cell Biol 1997;17:6114-21.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 6114-6121
-
-
Wang, P.J.1
Chabes, A.2
Casagrande, R.3
Tian, X.C.4
Thelander, L.5
Huffaker, T.C.6
-
7
-
-
0023395932
-
Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability
-
Elledge SJ, Davis RW. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol Cell Biol 1987;7:2783-93.
-
(1987)
Mol Cell Biol
, vol.7
, pp. 2783-2793
-
-
Elledge, S.J.1
Davis, R.W.2
-
8
-
-
0023426281
-
Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate
-
Hurd HK, Roberts CW, Roberts JW. Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Mol Cell Biol 1987;7:3673-7.
-
(1987)
Mol Cell Biol
, vol.7
, pp. 3673-3677
-
-
Hurd, H.K.1
Roberts, C.W.2
Roberts, J.W.3
-
9
-
-
0034646230
-
Yeast ribonucleotide reductase has a heterodimeric iron-radical- containing subunit
-
Chabes A, Domkin V, Larsson G, Liu A, Graslund A, Wijmenga S, et al. Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit. Proc Natl Acad Sci USA 2000;97:2474-9.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 2474-2479
-
-
Chabes, A.1
Domkin, V.2
Larsson, G.3
Liu, A.4
Graslund, A.5
Wijmenga, S.6
-
10
-
-
0033607284
-
Purification of ribonucleotide reductase subunits Y1, Y2, Y3, and Y4 from yeast: Y4 plays a key role in diiron cluster assembly
-
Nguyen HH, Ge J, Perlstein DL, Stubbe J. Purification of ribonucleotide reductase subunits Y1, Y2, Y3, and Y4 from yeast: Y4 plays a key role in diiron cluster assembly. Proc Natl Acad Sci USA 1999;96:12339-44.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 12339-12344
-
-
Nguyen, H.H.1
Ge, J.2
Perlstein, D.L.3
Stubbe, J.4
-
11
-
-
0035964172
-
Structure of the yeast ribonucleotide reductase Y2Y4 heterodimer
-
Voegtli WC, Ge J, Perlstein DL, Stubbe J, Rosenzweig AC. Structure of the yeast ribonucleotide reductase Y2Y4 heterodimer. Proc Natl Acad Sci USA 2001;98:10073-8.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10073-10078
-
-
Voegtli, W.C.1
Ge, J.2
Perlstein, D.L.3
Stubbe, J.4
Rosenzweig, A.C.5
-
12
-
-
27944493626
-
The active form of the Saccharomyces cerevisiae ribonucleotide reductase small subunit is a heterodimer in vitro and in vivo
-
Perlstein DL, Ge J, Ortigosa AD, Robblee JH, Zhang Z, Huang M, et al. The active form of the Saccharomyces cerevisiae ribonucleotide reductase small subunit is a heterodimer in vitro and in vivo. Biochemistry 2005;44:15366-77.
-
(2005)
Biochemistry
, vol.44
, pp. 15366-15377
-
-
Perlstein, D.L.1
Ge, J.2
Ortigosa, A.D.3
Robblee, J.H.4
Zhang, Z.5
Huang, M.6
-
13
-
-
82355184470
-
Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: Requirement of Rnr4 and contribution of Grx3/4 and Dre2 proteins
-
Zhang Y, Liu L, Wu X, An X, Stubbe J, Huang M. Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: Requirement of Rnr4 and contribution of Grx3/4 and Dre2 proteins. J Biol Chem 2011;286:41499-509.
-
(2011)
J Biol Chem
, vol.286
, pp. 41499-41509
-
-
Zhang, Y.1
Liu, L.2
Wu, X.3
An, X.4
Stubbe, J.5
Huang, M.6
-
14
-
-
77957674907
-
Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster
-
Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 2010;12:373-85.
-
(2010)
Cell Metab
, vol.12
, pp. 373-385
-
-
Muhlenhoff, U.1
Molik, S.2
Godoy, J.R.3
Uzarska, M.A.4
Richter, N.5
Seubert, A.6
-
15
-
-
0025350420
-
Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase
-
Elledge SJ, Davis RW. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 1990;4:740-51.
-
(1990)
Genes Dev
, vol.4
, pp. 740-751
-
-
Elledge, S.J.1
Davis, R.W.2
-
16
-
-
0037166270
-
Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex
-
Domkin V, Thelander L, Chabes A. Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex. J Biol Chem 2002;277:18574-8.
-
(2002)
J Biol Chem
, vol.277
, pp. 18574-18578
-
-
Domkin, V.1
Thelander, L.2
Chabes, A.3
-
18
-
-
0037423223
-
Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
-
Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 2003;112:391-401.
-
(2003)
Cell
, vol.112
, pp. 391-401
-
-
Chabes, A.1
Georgieva, B.2
Domkin, V.3
Zhao, X.4
Rothstein, R.5
Thelander, L.6
-
19
-
-
33748785426
-
Enzymatically active mammalian ribonucleotide reductase exists primarily as an -6-2 octamer
-
Rofougaran R, Vodnala M, Hofer A. Enzymatically active mammalian ribonucleotide reductase exists primarily as an -6-2 octamer. J Biol Chem 2006;281:27705-11.
-
(2006)
J Biol Chem
, vol.281
, pp. 27705-27711
-
-
Rofougaran, R.1
Vodnala, M.2
Hofer, A.3
-
20
-
-
79952331478
-
Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization
-
Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, et al. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol 2011;18:316-22.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 316-322
-
-
Fairman, J.W.1
Wijerathna, S.R.2
Ahmad, M.F.3
Xu, H.4
Nakano, R.5
Jha, S.6
-
21
-
-
0032483576
-
The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor
-
Huang M, Zhou Z, Elledge SJ. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 1998;94:595-605.
-
(1998)
Cell
, vol.94
, pp. 595-605
-
-
Huang, M.1
Zhou, Z.2
Elledge, S.J.3
-
22
-
-
12844268576
-
Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae
-
Zaim J, Speina E, Kierzek AM. Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 2005;280:28-37.
-
(2005)
J Biol Chem
, vol.280
, pp. 28-37
-
-
Zaim, J.1
Speina, E.2
Kierzek, A.M.3
-
23
-
-
3042551856
-
Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae
-
Zhang Z, Reese JC. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 2004;23:2246-57.
-
(2004)
EMBO J
, vol.23
, pp. 2246-2257
-
-
Zhang, Z.1
Reese, J.C.2
-
24
-
-
0035823553
-
Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence
-
Li B, Reese JC. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 2001;276:33788-97.
-
(2001)
J Biol Chem
, vol.276
, pp. 33788-33797
-
-
Li, B.1
Reese, J.C.2
-
25
-
-
33645845414
-
Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reducatese genes
-
Fu Y, Xiao W. Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reducatese genes. Nucleic Acids Res 2006;34:1876-83.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 1876-1883
-
-
Fu, Y.1
Xiao, W.2
-
26
-
-
23844531920
-
Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism
-
Zhang Z, Reese JC. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 2005;25:7399-411.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 7399-7411
-
-
Zhang, Z.1
Reese, J.C.2
-
27
-
-
34147203592
-
Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes
-
Sharma VM, Tomar RS, Dempsey AE, Reese JC. Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 2007;27:3199-210.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3199-3210
-
-
Sharma, V.M.1
Tomar, R.S.2
Dempsey, A.E.3
Reese, J.C.4
-
28
-
-
79958001799
-
Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools
-
Tsaponina O, Barsoum E, Astrom SU, Chabes A. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet 2011;7:e1002061.
-
(2011)
PLoS Genet
, vol.7
-
-
Tsaponina, O.1
Barsoum, E.2
Astrom, S.U.3
Chabes, A.4
-
29
-
-
0027501142
-
A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase
-
Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 1993;261:1551-7.
-
(1993)
Science
, vol.261
, pp. 1551-1557
-
-
Koch, C.1
Moll, T.2
Neuberg, M.3
Ahorn, H.4
Nasmyth, K.5
-
30
-
-
0035945567
-
Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
-
Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001;409:533-8.
-
(2001)
Nature
, vol.409
, pp. 533-538
-
-
Iyer, V.R.1
Horak, C.E.2
Scafe, C.S.3
Botstein, D.4
Snyder, M.5
Brown, P.O.6
-
31
-
-
55849110775
-
Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit
-
de Bruin RA, Kalashnikova TI, Wittenberg C. Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit. Mol Cell Biol 2008;28:6919-28.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 6919-6928
-
-
De Bruin, R.A.1
Kalashnikova, T.I.2
Wittenberg, C.3
-
32
-
-
0032814464
-
Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein
-
Ho Y, Costanzo M, Moore L, Kobayashi R, Andrews BJ. Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein. Mol Cell Biol 1999;19:5267-78.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 5267-5278
-
-
Ho, Y.1
Costanzo, M.2
Moore, L.3
Kobayashi, R.4
Andrews, B.J.5
-
33
-
-
0038110950
-
G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1
-
Costanzo M, Schub O, Andrews B. G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol 2003;23:5064-77.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 5064-5077
-
-
Costanzo, M.1
Schub, O.2
Andrews, B.3
-
34
-
-
33747017731
-
Constraining G1-specific transcription to late G1 phase: The MBF-associated corepressor Nrm1 acts via negative feedback
-
de Bruin RA, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, Yates J, 3rd, et al. Constraining G1-specific transcription to late G1 phase: The MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell 2006;23:483-96.
-
(2006)
Mol Cell
, vol.23
, pp. 483-496
-
-
De Bruin, R.A.1
Kalashnikova, T.I.2
Chahwan, C.3
McDonald, W.H.4
Wohlschlegel, J.5
Yates Iii., J.6
-
35
-
-
84859431045
-
DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1
-
Travesa A, Kuo D, de Bruin RA, Kalashnikova TI, Guaderrama M, Thai K, et al. DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1. EMBO J 2012;31:1811-22.
-
(2012)
EMBO J
, vol.31
, pp. 1811-1822
-
-
Travesa, A.1
Kuo, D.2
De Bruin, R.A.3
Kalashnikova, T.I.4
Guaderrama, M.5
Thai, K.6
-
36
-
-
84859420945
-
Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes
-
Bastos de Oliveira FM, Harris MR, Brazauskas P, de Bruin RA, Smolka MB. Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 2012;31:1798-810.
-
(2012)
EMBO J
, vol.31
, pp. 1798-1810
-
-
Bastos De Oliveira, F.M.1
Harris, M.R.2
Brazauskas, P.3
De Bruin, R.A.4
Smolka, M.B.5
-
37
-
-
0031036674
-
Role of the casein kinase i isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae
-
Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997;94:581-6.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 581-586
-
-
Ho, Y.1
Mason, S.2
Kobayashi, R.3
Hoekstra, M.4
Andrews, B.5
-
38
-
-
0032161269
-
A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
-
Zhao X, Muller EG, Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 1998;2:329-40.
-
(1998)
Mol Cell
, vol.2
, pp. 329-340
-
-
Zhao, X.1
Muller, E.G.2
Rothstein, R.3
-
39
-
-
0034460153
-
Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality
-
Zhao X, Georgieva B, Chabes A, Domkin V, Ippel JH, Schleucher J, et al. Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol Cell Biol 2000;20:9076-83.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 9076-9083
-
-
Zhao, X.1
Georgieva, B.2
Chabes, A.3
Domkin, V.4
Ippel, J.H.5
Schleucher, J.6
-
40
-
-
0033579443
-
Yeast Sml1 a protein inhibitor of ribonucleotide reductase
-
Chabes A, Domkin V, Thelander L. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem 1999;274:36679-83.
-
(1999)
J Biol Chem
, vol.274
, pp. 36679-36683
-
-
Chabes, A.1
Domkin, V.2
Thelander, L.3
-
41
-
-
33847779064
-
Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1
-
Zhang Z, Yang K, Chen CC, Feser J, Huang M. Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc Natl Acad Sci USA 2007;104:2217-22.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 2217-2222
-
-
Zhang, Z.1
Yang, K.2
Chen, C.C.3
Feser, J.4
Huang, M.5
-
42
-
-
0035796505
-
The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage
-
Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 2001;20:3544-53.
-
(2001)
EMBO J
, vol.20
, pp. 3544-3553
-
-
Zhao, X.1
Chabes, A.2
Domkin, V.3
Thelander, L.4
Rothstein, R.5
-
43
-
-
0037133566
-
The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1
-
Zhao X, Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA 2002;99:3746-51.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 3746-3751
-
-
Zhao, X.1
Rothstein, R.2
-
44
-
-
78049369559
-
The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage
-
Andreson BL, Gupta A, Georgieva BP, Rothstein R. The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucleic Acids Res 2010;38:6490-501.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6490-6501
-
-
Andreson, B.L.1
Gupta, A.2
Georgieva, B.P.3
Rothstein, R.4
-
45
-
-
1642442486
-
Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1
-
Uchiki T, Dice LT, Hettich RL, Dealwis C. Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1. J Biol Chem 2004;279:11293-303.
-
(2004)
J Biol Chem
, vol.279
, pp. 11293-11303
-
-
Uchiki, T.1
Dice, L.T.2
Hettich, R.L.3
Dealwis, C.4
-
46
-
-
0038312250
-
Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways
-
Yao R, Zhang Z, An X, Bucci B, Perlstein DL, Stubbe J, et al. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA 2003;100:6628-33.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 6628-6633
-
-
Yao, R.1
Zhang, Z.2
An, X.3
Bucci, B.4
Perlstein, D.L.5
Stubbe, J.6
-
47
-
-
33744465848
-
Cotransport of the heterodimeric small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm
-
An X, Zhang Z, Yang K, Huang M. Cotransport of the heterodimeric small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm. Genetics 2006;173:63-73.
-
(2006)
Genetics
, vol.173
, pp. 63-73
-
-
An, X.1
Zhang, Z.2
Yang, K.3
Huang, M.4
-
48
-
-
32044442056
-
Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1
-
Lee YD, Elledge SJ. Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev 2006;20:334-44.
-
(2006)
Genes Dev
, vol.20
, pp. 334-344
-
-
Lee, Y.D.1
Elledge, S.J.2
-
49
-
-
31944444142
-
Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein
-
Zhang Z, An X, Yang K, Perlstein DL, Hicks L, Kelleher N, et al. Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein. Proc Natl Acad Sci USA 2006;103:1422-7.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 1422-1427
-
-
Zhang, Z.1
An, X.2
Yang, K.3
Perlstein, D.L.4
Hicks, L.5
Kelleher, N.6
-
50
-
-
0038185375
-
Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms
-
Liu C, Powell KA, Mundt K, Wu L, Carr AM, Caspari T. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev 2003;17:1130-40.
-
(2003)
Genes Dev
, vol.17
, pp. 1130-1140
-
-
Liu, C.1
Powell, K.A.2
Mundt, K.3
Wu, L.4
Carr, A.M.5
Caspari, T.6
-
51
-
-
53349151829
-
Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase
-
Lee YD, Wang J, Stubbe J, Elledge SJ. Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell 2008;32:70-80.
-
(2008)
Mol Cell
, vol.32
, pp. 70-80
-
-
Lee, Y.D.1
Wang, J.2
Stubbe, J.3
Elledge, S.J.4
-
52
-
-
57349130603
-
Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit
-
Wu X, Huang M. Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol 2008;28:7156-67.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 7156-7167
-
-
Wu, X.1
Huang, M.2
-
53
-
-
84878990808
-
Causes and consequences of nutritional iron deficiency in living organisms. In: Biology of starvation in humans and other organisms
-
Merkin TC editor
-
Sanvisens N, Puig S. Causes and consequences of nutritional iron deficiency in living organisms. In: Biology of starvation in humans and other organisms. In: Merkin TC, editor. Hauppauge, New York: Nova Science Publishers; 2011. p. 245-76.
-
(2011)
Hauppauge New York Nova Science Publishers
, pp. 245-276
-
-
Sanvisens, N.1
Puig, S.2
-
54
-
-
0022357907
-
Characterization of L1210 cell growth inhibition by the bacterial iron chelators parabactin and compound II
-
Cavanaugh PF, Jr., Porter CW, Tukalo D, Frankfurt OS, Pavelic ZP, Bergeron RJ. Characterization of L1210 cell growth inhibition by the bacterial iron chelators parabactin and compound II. Cancer Res 1985;45:4754-9.
-
(1985)
Cancer Res
, vol.45
, pp. 4754-4759
-
-
Cavanaugh Jr., P.F.1
Porter, C.W.2
Tukalo, D.3
Frankfurt, O.S.4
Pavelic, Z.P.5
Bergeron, R.J.6
-
55
-
-
0026535637
-
Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis
-
Furukawa T, Naitoh Y, Kohno H, Tokunaga R, Taketani S. Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis. Life Sci 1992;50:2059-65.
-
(1992)
Life Sci
, vol.50
, pp. 2059-2065
-
-
Furukawa, T.1
Naitoh, Y.2
Kohno, H.3
Tokunaga, R.4
Taketani, S.5
-
56
-
-
83455219467
-
Regulation of ribonucleotide reductase in response to iron deficiency
-
Sanvisens N, Bano MC, Huang M, Puig S. Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell 2011;44:759-69.
-
(2011)
Mol Cell
, vol.44
, pp. 759-769
-
-
Sanvisens, N.1
Bano, M.C.2
Huang, M.3
Puig, S.4
-
57
-
-
11844257593
-
Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
-
Puig S, Askeland E, Thiele DJ. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005;120:99-110.
-
(2005)
Cell
, vol.120
, pp. 99-110
-
-
Puig, S.1
Askeland, E.2
Thiele, D.J.3
-
58
-
-
44349183685
-
Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
-
Puig S, Vergara SV, Thiele DJ. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab 2008;7:555-64.
-
(2008)
Cell Metab
, vol.7
, pp. 555-564
-
-
Puig, S.1
Vergara, S.V.2
Thiele, D.J.3
-
59
-
-
83655212423
-
Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes
-
Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 2011;8:125-32.
-
(2011)
Nat Chem Biol
, vol.8
, pp. 125-132
-
-
Netz, D.J.1
Stith, C.M.2
Stumpfig, M.3
Kopf, G.4
Vogel, D.5
Genau, H.M.6
-
60
-
-
84860295514
-
Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen
-
Salguero I, Guarino E, Shepherd ME, Deegan TD, Havens CG, MacNeill SA, et al. Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen. Curr Biol 2012;22:720-6.
-
(2012)
Curr Biol
, vol.22
, pp. 720-726
-
-
Salguero, I.1
Guarino, E.2
Shepherd, M.E.3
Deegan, T.D.4
Havens, C.G.5
Macneill, S.A.6
|