메뉴 건너뛰기




Volumn 36, Issue 2, 2013, Pages 51-58

Function and regulation of yeast ribonucleotide reductase: Cell cycle, genotoxic stress, and iron bioavailability

Author keywords

cell cycle; genotoxic stress; iron deficiency; ribonucleotide reductase; Saccharomyces cerevisiae; yeast

Indexed keywords

DEOXYRIBONUCLEOSIDE TRIPHOSPHATE; IRON; RIBONUCLEOTIDE REDUCTASE;

EID: 84881161074     PISSN: 23194170     EISSN: None     Source Type: Journal    
DOI: 10.4103/2319-4170.110398     Document Type: Review
Times cited : (47)

References (60)
  • 1
  • 4
    • 79953305717 scopus 로고    scopus 로고
    • Class i ribonucleotide reductases: Metallocofactor assembly and repair in vitro and in vivo
    • Cotruvo JA, Stubbe J. Class I ribonucleotide reductases: Metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem 2011;80:733-67.
    • (2011) Annu Rev Biochem , vol.80 , pp. 733-767
    • Cotruvo, J.A.1    Stubbe, J.2
  • 5
    • 0030813561 scopus 로고    scopus 로고
    • Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae
    • Huang M, Elledge SJ. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 1997;17:6105-13.
    • (1997) Mol Cell Biol , vol.17 , pp. 6105-6113
    • Huang, M.1    Elledge, S.J.2
  • 7
    • 0023395932 scopus 로고
    • Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability
    • Elledge SJ, Davis RW. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol Cell Biol 1987;7:2783-93.
    • (1987) Mol Cell Biol , vol.7 , pp. 2783-2793
    • Elledge, S.J.1    Davis, R.W.2
  • 8
    • 0023426281 scopus 로고
    • Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate
    • Hurd HK, Roberts CW, Roberts JW. Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Mol Cell Biol 1987;7:3673-7.
    • (1987) Mol Cell Biol , vol.7 , pp. 3673-3677
    • Hurd, H.K.1    Roberts, C.W.2    Roberts, J.W.3
  • 10
    • 0033607284 scopus 로고    scopus 로고
    • Purification of ribonucleotide reductase subunits Y1, Y2, Y3, and Y4 from yeast: Y4 plays a key role in diiron cluster assembly
    • Nguyen HH, Ge J, Perlstein DL, Stubbe J. Purification of ribonucleotide reductase subunits Y1, Y2, Y3, and Y4 from yeast: Y4 plays a key role in diiron cluster assembly. Proc Natl Acad Sci USA 1999;96:12339-44.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 12339-12344
    • Nguyen, H.H.1    Ge, J.2    Perlstein, D.L.3    Stubbe, J.4
  • 12
    • 27944493626 scopus 로고    scopus 로고
    • The active form of the Saccharomyces cerevisiae ribonucleotide reductase small subunit is a heterodimer in vitro and in vivo
    • Perlstein DL, Ge J, Ortigosa AD, Robblee JH, Zhang Z, Huang M, et al. The active form of the Saccharomyces cerevisiae ribonucleotide reductase small subunit is a heterodimer in vitro and in vivo. Biochemistry 2005;44:15366-77.
    • (2005) Biochemistry , vol.44 , pp. 15366-15377
    • Perlstein, D.L.1    Ge, J.2    Ortigosa, A.D.3    Robblee, J.H.4    Zhang, Z.5    Huang, M.6
  • 13
    • 82355184470 scopus 로고    scopus 로고
    • Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: Requirement of Rnr4 and contribution of Grx3/4 and Dre2 proteins
    • Zhang Y, Liu L, Wu X, An X, Stubbe J, Huang M. Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: Requirement of Rnr4 and contribution of Grx3/4 and Dre2 proteins. J Biol Chem 2011;286:41499-509.
    • (2011) J Biol Chem , vol.286 , pp. 41499-41509
    • Zhang, Y.1    Liu, L.2    Wu, X.3    An, X.4    Stubbe, J.5    Huang, M.6
  • 14
    • 77957674907 scopus 로고    scopus 로고
    • Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster
    • Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 2010;12:373-85.
    • (2010) Cell Metab , vol.12 , pp. 373-385
    • Muhlenhoff, U.1    Molik, S.2    Godoy, J.R.3    Uzarska, M.A.4    Richter, N.5    Seubert, A.6
  • 15
    • 0025350420 scopus 로고
    • Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase
    • Elledge SJ, Davis RW. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 1990;4:740-51.
    • (1990) Genes Dev , vol.4 , pp. 740-751
    • Elledge, S.J.1    Davis, R.W.2
  • 16
    • 0037166270 scopus 로고    scopus 로고
    • Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex
    • Domkin V, Thelander L, Chabes A. Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex. J Biol Chem 2002;277:18574-8.
    • (2002) J Biol Chem , vol.277 , pp. 18574-18578
    • Domkin, V.1    Thelander, L.2    Chabes, A.3
  • 18
    • 0037423223 scopus 로고    scopus 로고
    • Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
    • Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 2003;112:391-401.
    • (2003) Cell , vol.112 , pp. 391-401
    • Chabes, A.1    Georgieva, B.2    Domkin, V.3    Zhao, X.4    Rothstein, R.5    Thelander, L.6
  • 19
    • 33748785426 scopus 로고    scopus 로고
    • Enzymatically active mammalian ribonucleotide reductase exists primarily as an -6-2 octamer
    • Rofougaran R, Vodnala M, Hofer A. Enzymatically active mammalian ribonucleotide reductase exists primarily as an -6-2 octamer. J Biol Chem 2006;281:27705-11.
    • (2006) J Biol Chem , vol.281 , pp. 27705-27711
    • Rofougaran, R.1    Vodnala, M.2    Hofer, A.3
  • 20
    • 79952331478 scopus 로고    scopus 로고
    • Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization
    • Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, et al. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol 2011;18:316-22.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 316-322
    • Fairman, J.W.1    Wijerathna, S.R.2    Ahmad, M.F.3    Xu, H.4    Nakano, R.5    Jha, S.6
  • 21
    • 0032483576 scopus 로고    scopus 로고
    • The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor
    • Huang M, Zhou Z, Elledge SJ. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 1998;94:595-605.
    • (1998) Cell , vol.94 , pp. 595-605
    • Huang, M.1    Zhou, Z.2    Elledge, S.J.3
  • 22
    • 12844268576 scopus 로고    scopus 로고
    • Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae
    • Zaim J, Speina E, Kierzek AM. Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 2005;280:28-37.
    • (2005) J Biol Chem , vol.280 , pp. 28-37
    • Zaim, J.1    Speina, E.2    Kierzek, A.M.3
  • 23
    • 3042551856 scopus 로고    scopus 로고
    • Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae
    • Zhang Z, Reese JC. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 2004;23:2246-57.
    • (2004) EMBO J , vol.23 , pp. 2246-2257
    • Zhang, Z.1    Reese, J.C.2
  • 24
    • 0035823553 scopus 로고    scopus 로고
    • Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence
    • Li B, Reese JC. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 2001;276:33788-97.
    • (2001) J Biol Chem , vol.276 , pp. 33788-33797
    • Li, B.1    Reese, J.C.2
  • 25
    • 33645845414 scopus 로고    scopus 로고
    • Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reducatese genes
    • Fu Y, Xiao W. Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reducatese genes. Nucleic Acids Res 2006;34:1876-83.
    • (2006) Nucleic Acids Res , vol.34 , pp. 1876-1883
    • Fu, Y.1    Xiao, W.2
  • 26
    • 23844531920 scopus 로고    scopus 로고
    • Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism
    • Zhang Z, Reese JC. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 2005;25:7399-411.
    • (2005) Mol Cell Biol , vol.25 , pp. 7399-7411
    • Zhang, Z.1    Reese, J.C.2
  • 27
    • 34147203592 scopus 로고    scopus 로고
    • Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes
    • Sharma VM, Tomar RS, Dempsey AE, Reese JC. Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 2007;27:3199-210.
    • (2007) Mol Cell Biol , vol.27 , pp. 3199-3210
    • Sharma, V.M.1    Tomar, R.S.2    Dempsey, A.E.3    Reese, J.C.4
  • 28
    • 79958001799 scopus 로고    scopus 로고
    • Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools
    • Tsaponina O, Barsoum E, Astrom SU, Chabes A. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet 2011;7:e1002061.
    • (2011) PLoS Genet , vol.7
    • Tsaponina, O.1    Barsoum, E.2    Astrom, S.U.3    Chabes, A.4
  • 29
    • 0027501142 scopus 로고
    • A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase
    • Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 1993;261:1551-7.
    • (1993) Science , vol.261 , pp. 1551-1557
    • Koch, C.1    Moll, T.2    Neuberg, M.3    Ahorn, H.4    Nasmyth, K.5
  • 30
    • 0035945567 scopus 로고    scopus 로고
    • Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
    • Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001;409:533-8.
    • (2001) Nature , vol.409 , pp. 533-538
    • Iyer, V.R.1    Horak, C.E.2    Scafe, C.S.3    Botstein, D.4    Snyder, M.5    Brown, P.O.6
  • 31
    • 55849110775 scopus 로고    scopus 로고
    • Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit
    • de Bruin RA, Kalashnikova TI, Wittenberg C. Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit. Mol Cell Biol 2008;28:6919-28.
    • (2008) Mol Cell Biol , vol.28 , pp. 6919-6928
    • De Bruin, R.A.1    Kalashnikova, T.I.2    Wittenberg, C.3
  • 32
    • 0032814464 scopus 로고    scopus 로고
    • Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein
    • Ho Y, Costanzo M, Moore L, Kobayashi R, Andrews BJ. Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein. Mol Cell Biol 1999;19:5267-78.
    • (1999) Mol Cell Biol , vol.19 , pp. 5267-5278
    • Ho, Y.1    Costanzo, M.2    Moore, L.3    Kobayashi, R.4    Andrews, B.J.5
  • 33
    • 0038110950 scopus 로고    scopus 로고
    • G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1
    • Costanzo M, Schub O, Andrews B. G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol 2003;23:5064-77.
    • (2003) Mol Cell Biol , vol.23 , pp. 5064-5077
    • Costanzo, M.1    Schub, O.2    Andrews, B.3
  • 34
    • 33747017731 scopus 로고    scopus 로고
    • Constraining G1-specific transcription to late G1 phase: The MBF-associated corepressor Nrm1 acts via negative feedback
    • de Bruin RA, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, Yates J, 3rd, et al. Constraining G1-specific transcription to late G1 phase: The MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell 2006;23:483-96.
    • (2006) Mol Cell , vol.23 , pp. 483-496
    • De Bruin, R.A.1    Kalashnikova, T.I.2    Chahwan, C.3    McDonald, W.H.4    Wohlschlegel, J.5    Yates Iii., J.6
  • 35
    • 84859431045 scopus 로고    scopus 로고
    • DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1
    • Travesa A, Kuo D, de Bruin RA, Kalashnikova TI, Guaderrama M, Thai K, et al. DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1. EMBO J 2012;31:1811-22.
    • (2012) EMBO J , vol.31 , pp. 1811-1822
    • Travesa, A.1    Kuo, D.2    De Bruin, R.A.3    Kalashnikova, T.I.4    Guaderrama, M.5    Thai, K.6
  • 36
    • 84859420945 scopus 로고    scopus 로고
    • Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes
    • Bastos de Oliveira FM, Harris MR, Brazauskas P, de Bruin RA, Smolka MB. Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 2012;31:1798-810.
    • (2012) EMBO J , vol.31 , pp. 1798-1810
    • Bastos De Oliveira, F.M.1    Harris, M.R.2    Brazauskas, P.3    De Bruin, R.A.4    Smolka, M.B.5
  • 37
    • 0031036674 scopus 로고    scopus 로고
    • Role of the casein kinase i isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae
    • Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997;94:581-6.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 581-586
    • Ho, Y.1    Mason, S.2    Kobayashi, R.3    Hoekstra, M.4    Andrews, B.5
  • 38
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
    • Zhao X, Muller EG, Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 1998;2:329-40.
    • (1998) Mol Cell , vol.2 , pp. 329-340
    • Zhao, X.1    Muller, E.G.2    Rothstein, R.3
  • 39
    • 0034460153 scopus 로고    scopus 로고
    • Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality
    • Zhao X, Georgieva B, Chabes A, Domkin V, Ippel JH, Schleucher J, et al. Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol Cell Biol 2000;20:9076-83.
    • (2000) Mol Cell Biol , vol.20 , pp. 9076-9083
    • Zhao, X.1    Georgieva, B.2    Chabes, A.3    Domkin, V.4    Ippel, J.H.5    Schleucher, J.6
  • 40
    • 0033579443 scopus 로고    scopus 로고
    • Yeast Sml1 a protein inhibitor of ribonucleotide reductase
    • Chabes A, Domkin V, Thelander L. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem 1999;274:36679-83.
    • (1999) J Biol Chem , vol.274 , pp. 36679-36683
    • Chabes, A.1    Domkin, V.2    Thelander, L.3
  • 41
    • 33847779064 scopus 로고    scopus 로고
    • Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1
    • Zhang Z, Yang K, Chen CC, Feser J, Huang M. Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc Natl Acad Sci USA 2007;104:2217-22.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2217-2222
    • Zhang, Z.1    Yang, K.2    Chen, C.C.3    Feser, J.4    Huang, M.5
  • 42
    • 0035796505 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage
    • Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 2001;20:3544-53.
    • (2001) EMBO J , vol.20 , pp. 3544-3553
    • Zhao, X.1    Chabes, A.2    Domkin, V.3    Thelander, L.4    Rothstein, R.5
  • 43
    • 0037133566 scopus 로고    scopus 로고
    • The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1
    • Zhao X, Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA 2002;99:3746-51.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 3746-3751
    • Zhao, X.1    Rothstein, R.2
  • 44
    • 78049369559 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage
    • Andreson BL, Gupta A, Georgieva BP, Rothstein R. The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucleic Acids Res 2010;38:6490-501.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6490-6501
    • Andreson, B.L.1    Gupta, A.2    Georgieva, B.P.3    Rothstein, R.4
  • 45
    • 1642442486 scopus 로고    scopus 로고
    • Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1
    • Uchiki T, Dice LT, Hettich RL, Dealwis C. Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1. J Biol Chem 2004;279:11293-303.
    • (2004) J Biol Chem , vol.279 , pp. 11293-11303
    • Uchiki, T.1    Dice, L.T.2    Hettich, R.L.3    Dealwis, C.4
  • 46
    • 0038312250 scopus 로고    scopus 로고
    • Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways
    • Yao R, Zhang Z, An X, Bucci B, Perlstein DL, Stubbe J, et al. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA 2003;100:6628-33.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 6628-6633
    • Yao, R.1    Zhang, Z.2    An, X.3    Bucci, B.4    Perlstein, D.L.5    Stubbe, J.6
  • 47
    • 33744465848 scopus 로고    scopus 로고
    • Cotransport of the heterodimeric small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm
    • An X, Zhang Z, Yang K, Huang M. Cotransport of the heterodimeric small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm. Genetics 2006;173:63-73.
    • (2006) Genetics , vol.173 , pp. 63-73
    • An, X.1    Zhang, Z.2    Yang, K.3    Huang, M.4
  • 48
    • 32044442056 scopus 로고    scopus 로고
    • Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1
    • Lee YD, Elledge SJ. Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev 2006;20:334-44.
    • (2006) Genes Dev , vol.20 , pp. 334-344
    • Lee, Y.D.1    Elledge, S.J.2
  • 49
    • 31944444142 scopus 로고    scopus 로고
    • Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein
    • Zhang Z, An X, Yang K, Perlstein DL, Hicks L, Kelleher N, et al. Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein. Proc Natl Acad Sci USA 2006;103:1422-7.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 1422-1427
    • Zhang, Z.1    An, X.2    Yang, K.3    Perlstein, D.L.4    Hicks, L.5    Kelleher, N.6
  • 50
    • 0038185375 scopus 로고    scopus 로고
    • Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms
    • Liu C, Powell KA, Mundt K, Wu L, Carr AM, Caspari T. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev 2003;17:1130-40.
    • (2003) Genes Dev , vol.17 , pp. 1130-1140
    • Liu, C.1    Powell, K.A.2    Mundt, K.3    Wu, L.4    Carr, A.M.5    Caspari, T.6
  • 51
    • 53349151829 scopus 로고    scopus 로고
    • Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase
    • Lee YD, Wang J, Stubbe J, Elledge SJ. Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell 2008;32:70-80.
    • (2008) Mol Cell , vol.32 , pp. 70-80
    • Lee, Y.D.1    Wang, J.2    Stubbe, J.3    Elledge, S.J.4
  • 52
    • 57349130603 scopus 로고    scopus 로고
    • Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit
    • Wu X, Huang M. Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol 2008;28:7156-67.
    • (2008) Mol Cell Biol , vol.28 , pp. 7156-7167
    • Wu, X.1    Huang, M.2
  • 53
    • 84878990808 scopus 로고    scopus 로고
    • Causes and consequences of nutritional iron deficiency in living organisms. In: Biology of starvation in humans and other organisms
    • Merkin TC editor
    • Sanvisens N, Puig S. Causes and consequences of nutritional iron deficiency in living organisms. In: Biology of starvation in humans and other organisms. In: Merkin TC, editor. Hauppauge, New York: Nova Science Publishers; 2011. p. 245-76.
    • (2011) Hauppauge New York Nova Science Publishers , pp. 245-276
    • Sanvisens, N.1    Puig, S.2
  • 54
  • 55
    • 0026535637 scopus 로고
    • Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis
    • Furukawa T, Naitoh Y, Kohno H, Tokunaga R, Taketani S. Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis. Life Sci 1992;50:2059-65.
    • (1992) Life Sci , vol.50 , pp. 2059-2065
    • Furukawa, T.1    Naitoh, Y.2    Kohno, H.3    Tokunaga, R.4    Taketani, S.5
  • 56
    • 83455219467 scopus 로고    scopus 로고
    • Regulation of ribonucleotide reductase in response to iron deficiency
    • Sanvisens N, Bano MC, Huang M, Puig S. Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell 2011;44:759-69.
    • (2011) Mol Cell , vol.44 , pp. 759-769
    • Sanvisens, N.1    Bano, M.C.2    Huang, M.3    Puig, S.4
  • 57
    • 11844257593 scopus 로고    scopus 로고
    • Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
    • Puig S, Askeland E, Thiele DJ. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005;120:99-110.
    • (2005) Cell , vol.120 , pp. 99-110
    • Puig, S.1    Askeland, E.2    Thiele, D.J.3
  • 58
    • 44349183685 scopus 로고    scopus 로고
    • Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
    • Puig S, Vergara SV, Thiele DJ. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab 2008;7:555-64.
    • (2008) Cell Metab , vol.7 , pp. 555-564
    • Puig, S.1    Vergara, S.V.2    Thiele, D.J.3
  • 59
    • 83655212423 scopus 로고    scopus 로고
    • Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes
    • Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 2011;8:125-32.
    • (2011) Nat Chem Biol , vol.8 , pp. 125-132
    • Netz, D.J.1    Stith, C.M.2    Stumpfig, M.3    Kopf, G.4    Vogel, D.5    Genau, H.M.6
  • 60
    • 84860295514 scopus 로고    scopus 로고
    • Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen
    • Salguero I, Guarino E, Shepherd ME, Deegan TD, Havens CG, MacNeill SA, et al. Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen. Curr Biol 2012;22:720-6.
    • (2012) Curr Biol , vol.22 , pp. 720-726
    • Salguero, I.1    Guarino, E.2    Shepherd, M.E.3    Deegan, T.D.4    Havens, C.G.5    Macneill, S.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.