메뉴 건너뛰기




Volumn 23, Issue 8, 2013, Pages 399-408

Dynamic regulation of endosymbiotic organelles by ubiquitination

Author keywords

Chloroplasts; E3 ligases; Mitochondria; Plastids; Ubiquitin proteasome system

Indexed keywords

MITOFUSIN 1; MITOFUSIN 2; PROTEASOME; UBIQUITIN; UBIQUITIN PROTEIN LIGASE E3;

EID: 84880928973     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.04.008     Document Type: Review
Times cited : (24)

References (107)
  • 2
    • 33746016268 scopus 로고    scopus 로고
    • Mitochondria: more than just a powerhouse
    • McBride H.M., et al. Mitochondria: more than just a powerhouse. Curr. Biol. 2006, 16:R551-R560.
    • (2006) Curr. Biol. , vol.16
    • McBride, H.M.1
  • 3
    • 67349254570 scopus 로고    scopus 로고
    • The ubiquitin-26S proteasome system at the nexus of plant biology
    • Vierstra R.D. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 2009, 10:385-397.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 385-397
    • Vierstra, R.D.1
  • 4
    • 84865596150 scopus 로고    scopus 로고
    • Autophagy: a multifaceted intracellular system for bulk and selective recycling
    • Li F., Vierstra R.D. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 2012, 17:526-537.
    • (2012) Trends Plant Sci. , vol.17 , pp. 526-537
    • Li, F.1    Vierstra, R.D.2
  • 5
    • 77951096150 scopus 로고    scopus 로고
    • Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases
    • Chen H., Chan D.C. Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases. Hum. Mol. Genet. 2009, 18:R169-R176.
    • (2009) Hum. Mol. Genet. , vol.18
    • Chen, H.1    Chan, D.C.2
  • 6
    • 79960729178 scopus 로고    scopus 로고
    • The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery
    • Palmer C.S., et al. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell. Signal. 2011, 23:1534-1545.
    • (2011) Cell. Signal. , vol.23 , pp. 1534-1545
    • Palmer, C.S.1
  • 7
    • 79151480727 scopus 로고    scopus 로고
    • Ubiquitin-proteasome system and mitochondria - reciprocity
    • Livnat-Levanon N., Glickman M.H. Ubiquitin-proteasome system and mitochondria - reciprocity. Biochim. Biophys. Acta 2011, 1809:80-87.
    • (2011) Biochim. Biophys. Acta , vol.1809 , pp. 80-87
    • Livnat-Levanon, N.1    Glickman, M.H.2
  • 8
    • 33749253910 scopus 로고    scopus 로고
    • MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology
    • Nakamura N., et al. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7:1019-1022.
    • (2006) EMBO Rep. , vol.7 , pp. 1019-1022
    • Nakamura, N.1
  • 9
    • 33747613595 scopus 로고    scopus 로고
    • A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
    • Yonashiro R., et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25:3618-3626.
    • (2006) EMBO J. , vol.25 , pp. 3618-3626
    • Yonashiro, R.1
  • 10
    • 76649142385 scopus 로고    scopus 로고
    • Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1
    • Park Y.Y., et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123:619-626.
    • (2010) J. Cell Sci. , vol.123 , pp. 619-626
    • Park, Y.Y.1
  • 11
    • 34347398050 scopus 로고    scopus 로고
    • The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division
    • Karbowski M., et al. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178:71-84.
    • (2007) J. Cell Biol. , vol.178 , pp. 71-84
    • Karbowski, M.1
  • 12
    • 84871234101 scopus 로고    scopus 로고
    • 2/M phase through ubiquitylation by MARCH5
    • 2/M phase through ubiquitylation by MARCH5. Cell Div. 2012, 7:25.
    • (2012) Cell Div. , vol.7 , pp. 25
    • Park, Y.Y.1    Cho, H.2
  • 13
    • 84871309844 scopus 로고    scopus 로고
    • Inactivation of MARCH5 prevents mitochondrial fragmentation and interferes with cell death in a neuronal cell model
    • Fang L., et al. Inactivation of MARCH5 prevents mitochondrial fragmentation and interferes with cell death in a neuronal cell model. PLoS ONE 2012, 7:e52637.
    • (2012) PLoS ONE , vol.7
    • Fang, L.1
  • 14
    • 73949112709 scopus 로고    scopus 로고
    • Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation
    • Yonashiro R., et al. Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. Mol. Biol. Cell 2009, 20:4524-4530.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4524-4530
    • Yonashiro, R.1
  • 15
    • 84857132601 scopus 로고    scopus 로고
    • Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death
    • Yonashiro R., et al. Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2382-2387.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2382-2387
    • Yonashiro, R.1
  • 16
    • 44949231368 scopus 로고    scopus 로고
    • Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling
    • Li W., et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 2008, 3:e1487.
    • (2008) PLoS ONE , vol.3
    • Li, W.1
  • 17
    • 38349023008 scopus 로고    scopus 로고
    • Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
    • Neuspiel M., et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 2008, 18:102-108.
    • (2008) Curr. Biol. , vol.18 , pp. 102-108
    • Neuspiel, M.1
  • 18
    • 51049095678 scopus 로고    scopus 로고
    • GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth
    • Zhang B., et al. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth. Cell Res. 2008, 18:900-910.
    • (2008) Cell Res. , vol.18 , pp. 900-910
    • Zhang, B.1
  • 19
    • 45349094984 scopus 로고    scopus 로고
    • Mitochondrial dynamics and apoptosis
    • Suen D.F., et al. Mitochondrial dynamics and apoptosis. Genes Dev. 2008, 22:1577-1590.
    • (2008) Genes Dev. , vol.22 , pp. 1577-1590
    • Suen, D.F.1
  • 20
    • 67650076601 scopus 로고    scopus 로고
    • MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission
    • Braschi E., et al. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 2009, 10:748-754.
    • (2009) EMBO Rep. , vol.10 , pp. 748-754
    • Braschi, E.1
  • 21
    • 84871426886 scopus 로고    scopus 로고
    • The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli
    • Lokireddy S., et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 2012, 16:613-624.
    • (2012) Cell Metab. , vol.16 , pp. 613-624
    • Lokireddy, S.1
  • 22
    • 62049084519 scopus 로고    scopus 로고
    • The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
    • Zhong B., et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 2009, 30:397-407.
    • (2009) Immunity , vol.30 , pp. 397-407
    • Zhong, B.1
  • 23
    • 84866880227 scopus 로고    scopus 로고
    • DJ-1 promotes the proteasomal degradation of Fis1: implications of DJ-1 in neuronal protection
    • Zhang Q., et al. DJ-1 promotes the proteasomal degradation of Fis1: implications of DJ-1 in neuronal protection. Biochem. J. 2012, 447:261-269.
    • (2012) Biochem. J. , vol.447 , pp. 261-269
    • Zhang, Q.1
  • 24
    • 80052564638 scopus 로고    scopus 로고
    • RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1
    • Tang F., et al. RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS ONE 2010, 6:e24367.
    • (2010) PLoS ONE , vol.6
    • Tang, F.1
  • 25
    • 84865395988 scopus 로고    scopus 로고
    • Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
    • Leboucher G.P., et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell 2012, 47:547-557.
    • (2012) Mol. Cell , vol.47 , pp. 547-557
    • Leboucher, G.P.1
  • 26
    • 48749116067 scopus 로고    scopus 로고
    • Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion
    • Cohen M.M., et al. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol. Biol. Cell 2008, 19:2457-2464.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2457-2464
    • Cohen, M.M.1
  • 27
    • 33748327051 scopus 로고    scopus 로고
    • Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast
    • Durr M., et al. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell 2006, 17:3745-3755.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 3745-3755
    • Durr, M.1
  • 28
    • 79955535769 scopus 로고    scopus 로고
    • Mdm30 in mitochondrial outer membrane fusion
    • Mdm30 in mitochondrial outer membrane fusion. J. Cell Sci. 2011, 124:1403-1410.
    • (2011) J. Cell Sci. , vol.124 , pp. 1403-1410
    • Cohen, M.M.1
  • 29
    • 79953132685 scopus 로고    scopus 로고
    • Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion
    • Anton F., et al. Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion. J. Cell Sci. 2011, 124:1126-1135.
    • (2011) J. Cell Sci. , vol.124 , pp. 1126-1135
    • Anton, F.1
  • 30
    • 84875213589 scopus 로고    scopus 로고
    • Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates
    • Zhao J., et al. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell. Mol. Life Sci. 2012, 70:951-976.
    • (2012) Cell. Mol. Life Sci. , vol.70 , pp. 951-976
    • Zhao, J.1
  • 32
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191:1367-1380.
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1
  • 33
    • 79960493052 scopus 로고    scopus 로고
    • Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
    • Glauser L., et al. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 2011, 118:636-645.
    • (2011) J. Neurochem. , vol.118 , pp. 636-645
    • Glauser, L.1
  • 34
    • 77955844260 scopus 로고    scopus 로고
    • The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
    • Poole A.C., et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 2010, 5:e10054.
    • (2010) PLoS ONE , vol.5
    • Poole, A.C.1
  • 35
    • 77950384477 scopus 로고    scopus 로고
    • Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
    • Ziviani E., et al. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5018-5023.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 5018-5023
    • Ziviani, E.1
  • 36
    • 78649463381 scopus 로고    scopus 로고
    • Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
    • Gegg M.E., et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19:4861-4870.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 4861-4870
    • Gegg, M.E.1
  • 37
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1
  • 38
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • Vives-Bauza C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:378-383.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 378-383
    • Vives-Bauza, C.1
  • 39
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra D.P., et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8:e1000298.
    • (2010) PLoS Biol. , vol.8
    • Narendra, D.P.1
  • 40
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii S.R., et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 2011, 286:19630-19640.
    • (2011) J. Biol. Chem. , vol.286 , pp. 19630-19640
    • Yoshii, S.R.1
  • 41
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan N.C., et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 2011, 20:1726-1737.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1
  • 42
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf S.A., et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013, 496:372-376.
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 43
    • 79953231682 scopus 로고    scopus 로고
    • Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease
    • Wang H., et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J. Biol. Chem. 2011, 286:11649-11658.
    • (2011) J. Biol. Chem. , vol.286 , pp. 11649-11658
    • Wang, H.1
  • 44
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S., et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 119-131
    • Geisler, S.1
  • 45
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X., et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893-906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1
  • 46
    • 80052259389 scopus 로고    scopus 로고
    • Ubiquitin-dependent mitochondrial protein degradation
    • Heo J.M., Rutter J. Ubiquitin-dependent mitochondrial protein degradation. Int. J. Biochem. Cell Biol. 2011, 43:1422-1426.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 1422-1426
    • Heo, J.M.1    Rutter, J.2
  • 47
    • 79960716413 scopus 로고    scopus 로고
    • Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation
    • Karbowski M., Youle R.J. Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol. 2011, 23:476-482.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 476-482
    • Karbowski, M.1    Youle, R.J.2
  • 48
    • 42449147510 scopus 로고    scopus 로고
    • Hsp90 inhibition decreases mitochondrial protein turnover
    • Margineantu D.H., et al. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2:e1066.
    • (2007) PLoS ONE , vol.2
    • Margineantu, D.H.1
  • 49
    • 76549091356 scopus 로고    scopus 로고
    • Rapid turnover of mitochondrial uncoupling protein 3
    • Azzu V., et al. Rapid turnover of mitochondrial uncoupling protein 3. Biochem. J. 2010, 426:13-17.
    • (2010) Biochem. J. , vol.426 , pp. 13-17
    • Azzu, V.1
  • 50
    • 76649093912 scopus 로고    scopus 로고
    • Degradation of an intramitochondrial protein by the cytosolic proteasome
    • Azzu V., Brand M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123:578-585.
    • (2010) J. Cell Sci. , vol.123 , pp. 578-585
    • Azzu, V.1    Brand, M.D.2
  • 51
    • 84864703396 scopus 로고    scopus 로고
    • A role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial uncoupling protein 1 (UCP1)
    • Clarke K.J., et al. A role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial uncoupling protein 1 (UCP1). Biochim. Biophys. Acta 2012, 1817:1759-1767.
    • (2012) Biochim. Biophys. Acta , vol.1817 , pp. 1759-1767
    • Clarke, K.J.1
  • 52
    • 77953807457 scopus 로고    scopus 로고
    • The regulation and turnover of mitochondrial uncoupling proteins
    • Azzu V., et al. The regulation and turnover of mitochondrial uncoupling proteins. Biochim. Biophys. Acta 2010, 1797:785-791.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 785-791
    • Azzu, V.1
  • 53
    • 84856474838 scopus 로고    scopus 로고
    • Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system
    • Meyer H., et al. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 2012, 14:117-123.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 117-123
    • Meyer, H.1
  • 54
    • 79551663809 scopus 로고    scopus 로고
    • The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover
    • Xu S., et al. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 2011, 22:291-300.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 291-300
    • Xu, S.1
  • 55
    • 78149429951 scopus 로고    scopus 로고
    • A stress-responsive system for mitochondrial protein degradation
    • Heo J.M., et al. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 2010, 40:465-480.
    • (2010) Mol. Cell , vol.40 , pp. 465-480
    • Heo, J.M.1
  • 56
    • 84877132944 scopus 로고    scopus 로고
    • Intramolecular interactions control Vms1 translocation to damaged mitochondria
    • Heo J.M., et al. Intramolecular interactions control Vms1 translocation to damaged mitochondria. Mol. Biol. Cell 2013, 24:1263-1273.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1263-1273
    • Heo, J.M.1
  • 57
    • 84864382366 scopus 로고    scopus 로고
    • Cdc48p/p97-mediated regulation of mitochondrial morphology is Vms1p-independent
    • Esaki M., Ogura T. Cdc48p/p97-mediated regulation of mitochondrial morphology is Vms1p-independent. J. Struct. Biol. 2012, 179:112-120.
    • (2012) J. Struct. Biol. , vol.179 , pp. 112-120
    • Esaki, M.1    Ogura, T.2
  • 58
    • 3042543543 scopus 로고    scopus 로고
    • Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein
    • Lee R.J., et al. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 2004, 23:2206-2215.
    • (2004) EMBO J. , vol.23 , pp. 2206-2215
    • Lee, R.J.1
  • 60
    • 35148872652 scopus 로고    scopus 로고
    • The E3 ligase AtCHIP ubiquitylates FtsH1, a component of the chloroplast FtsH protease, and affects protein degradation in chloroplasts
    • Shen G., et al. The E3 ligase AtCHIP ubiquitylates FtsH1, a component of the chloroplast FtsH protease, and affects protein degradation in chloroplasts. Plant J. 2007, 52:309-321.
    • (2007) Plant J. , vol.52 , pp. 309-321
    • Shen, G.1
  • 61
    • 75649148551 scopus 로고    scopus 로고
    • Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis
    • Lee S., et al. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 2009, 21:3984-4001.
    • (2009) Plant Cell , vol.21 , pp. 3984-4001
    • Lee, S.1
  • 62
    • 77952506871 scopus 로고    scopus 로고
    • Protein transport into chloroplasts
    • Li H.M., Chiu C.C. Protein transport into chloroplasts. Annu. Rev. Plant Biol. 2010, 61:157-180.
    • (2010) Annu. Rev. Plant Biol. , vol.61 , pp. 157-180
    • Li, H.M.1    Chiu, C.C.2
  • 63
    • 47249152709 scopus 로고    scopus 로고
    • Targeting of nucleus-encoded proteins to chloroplasts in plants
    • Jarvis P. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol. 2008, 179:257-285.
    • (2008) New Phytol. , vol.179 , pp. 257-285
    • Jarvis, P.1
  • 64
    • 33644637941 scopus 로고    scopus 로고
    • The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids
    • Kessler F., Schnell D.J. The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic 2006, 7:248-257.
    • (2006) Traffic , vol.7 , pp. 248-257
    • Kessler, F.1    Schnell, D.J.2
  • 66
    • 3042724874 scopus 로고    scopus 로고
    • Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids
    • Ivanova Y., et al. Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell 2004, 15:3379-3392.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 3379-3392
    • Ivanova, Y.1
  • 67
    • 4043127545 scopus 로고    scopus 로고
    • Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors
    • Kubis S., et al. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 2004, 16:2059-2077.
    • (2004) Plant Cell , vol.16 , pp. 2059-2077
    • Kubis, S.1
  • 68
    • 0041920588 scopus 로고    scopus 로고
    • The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins
    • Kubis S., et al. The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell 2003, 15:1859-1871.
    • (2003) Plant Cell , vol.15 , pp. 1859-1871
    • Kubis, S.1
  • 69
    • 79955022797 scopus 로고    scopus 로고
    • Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.)
    • Reiland S., et al. Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.). Proteomics 2011, 11:1751-1763.
    • (2011) Proteomics , vol.11 , pp. 1751-1763
    • Reiland, S.1
  • 70
    • 27744432391 scopus 로고    scopus 로고
    • Plastids unleashed: their development and their integration in plant development
    • López-Juez E., Pyke K.A. Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 2005, 49:557-577.
    • (2005) Int. J. Dev. Biol. , vol.49 , pp. 557-577
    • López-Juez, E.1    Pyke, K.A.2
  • 71
    • 84868228819 scopus 로고    scopus 로고
    • Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system
    • Ling Q., et al. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 2012, 338:655-659.
    • (2012) Science , vol.338 , pp. 655-659
    • Ling, Q.1
  • 72
    • 18044394093 scopus 로고    scopus 로고
    • Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis
    • Stone S.L., et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 2005, 137:13-30.
    • (2005) Plant Physiol. , vol.137 , pp. 13-30
    • Stone, S.L.1
  • 73
    • 79959843748 scopus 로고    scopus 로고
    • An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing
    • Nakamura M., et al. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell 2011, 23:1830-1848.
    • (2011) Plant Cell , vol.23 , pp. 1830-1848
    • Nakamura, M.1
  • 74
    • 84870574281 scopus 로고    scopus 로고
    • Dynamic behavior of plastids related to environmental response
    • Morita M.T., Nakamura M. Dynamic behavior of plastids related to environmental response. Curr. Opin. Plant Biol. 2012, 15:722-728.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 722-728
    • Morita, M.T.1    Nakamura, M.2
  • 75
    • 65249182517 scopus 로고    scopus 로고
    • A role for the TOC complex in Arabidopsis root gravitropism
    • Stanga J.P., et al. A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol. 2009, 149:1896-1905.
    • (2009) Plant Physiol. , vol.149 , pp. 1896-1905
    • Stanga, J.P.1
  • 76
    • 67650532151 scopus 로고    scopus 로고
    • Interaction of actin and the chloroplast protein import apparatus
    • Jouhet J., Gray J.C. Interaction of actin and the chloroplast protein import apparatus. J. Biol. Chem. 2009, 284:19132-19141.
    • (2009) J. Biol. Chem. , vol.284 , pp. 19132-19141
    • Jouhet, J.1    Gray, J.C.2
  • 77
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O., et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300:1005-1016.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1
  • 78
    • 27244445331 scopus 로고    scopus 로고
    • Chloroplast outer membrane protein targeting and insertion
    • Hofmann N.R., Theg S.M. Chloroplast outer membrane protein targeting and insertion. Trends Plant Sci. 2005, 10:450-457.
    • (2005) Trends Plant Sci. , vol.10 , pp. 450-457
    • Hofmann, N.R.1    Theg, S.M.2
  • 79
    • 79954417075 scopus 로고    scopus 로고
    • Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress
    • Bouman L., et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011, 18:769-782.
    • (2011) Cell Death Differ. , vol.18 , pp. 769-782
    • Bouman, L.1
  • 80
    • 78650788110 scopus 로고    scopus 로고
    • Arabidopsis DAL1 and DAL2, two RING finger proteins homologous to Drosophila DIAP1, are involved in regulation of programmed cell death
    • Basnayake B.M., et al. Arabidopsis DAL1 and DAL2, two RING finger proteins homologous to Drosophila DIAP1, are involved in regulation of programmed cell death. Plant Cell Rep. 2011, 30:37-48.
    • (2011) Plant Cell Rep. , vol.30 , pp. 37-48
    • Basnayake, B.M.1
  • 81
    • 84857031377 scopus 로고    scopus 로고
    • Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease
    • Pilsl A., Winklhofer K.F. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathol. 2012, 123:173-188.
    • (2012) Acta Neuropathol. , vol.123 , pp. 173-188
    • Pilsl, A.1    Winklhofer, K.F.2
  • 82
    • 84855474847 scopus 로고    scopus 로고
    • Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder
    • Imai Y., Lu B. Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder. Curr. Opin. Neurobiol. 2011, 21:935-941.
    • (2011) Curr. Opin. Neurobiol. , vol.21 , pp. 935-941
    • Imai, Y.1    Lu, B.2
  • 83
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
    • Clark I.E., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441:1162-1166.
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1
  • 84
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
    • Park J., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441:1157-1161.
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1
  • 85
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin S.M., et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191:933-942.
    • (2010) J. Cell Biol. , vol.191 , pp. 933-942
    • Jin, S.M.1
  • 86
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M., et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 2012, 22:320-333.
    • (2012) Dev. Cell , vol.22 , pp. 320-333
    • Lazarou, M.1
  • 87
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010, 189:211-221.
    • (2010) J. Cell Biol. , vol.189 , pp. 211-221
    • Matsuda, N.1
  • 88
    • 77949478474 scopus 로고    scopus 로고
    • Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling
    • Sha D., et al. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum. Mol. Genet. 2010, 19:352-363.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 352-363
    • Sha, D.1
  • 89
    • 56049091236 scopus 로고    scopus 로고
    • PINK1 controls mitochondrial localization of Parkin through direct phosphorylation
    • Kim Y., et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 2008, 377:975-980.
    • (2008) Biochem. Biophys. Res. Commun. , vol.377 , pp. 975-980
    • Kim, Y.1
  • 90
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima K., et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2012, 2:1002.
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1
  • 91
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli C., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012, 2:120080.
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 92
    • 34648836983 scopus 로고    scopus 로고
    • Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity
    • Calabrese V., et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8:766-775.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 766-775
    • Calabrese, V.1
  • 93
    • 84873843566 scopus 로고    scopus 로고
    • Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons
    • Rakovic A., et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J. Biol. Chem. 2012, 288:2223-2237.
    • (2012) J. Biol. Chem. , vol.288 , pp. 2223-2237
    • Rakovic, A.1
  • 94
    • 80054731383 scopus 로고    scopus 로고
    • Proteome databases and other online resources for chloroplast research in Arabidopsis
    • Demartini D.R., et al. Proteome databases and other online resources for chloroplast research in Arabidopsis. Methods Mol. Biol. 2011, 775:93-115.
    • (2011) Methods Mol. Biol. , vol.775 , pp. 93-115
    • Demartini, D.R.1
  • 95
    • 0345600249 scopus 로고    scopus 로고
    • The division of endosymbiotic organelles
    • Osteryoung K.W., Nunnari J. The division of endosymbiotic organelles. Science 2003, 302:1698-1704.
    • (2003) Science , vol.302 , pp. 1698-1704
    • Osteryoung, K.W.1    Nunnari, J.2
  • 96
    • 84873080921 scopus 로고    scopus 로고
    • Divide and shape: an endosymbiont in action
    • Pyke K.A. Divide and shape: an endosymbiont in action. Planta 2012, 237:381-387.
    • (2012) Planta , vol.237 , pp. 381-387
    • Pyke, K.A.1
  • 97
    • 0033525788 scopus 로고    scopus 로고
    • Mitochondrial evolution
    • Gray M.W., et al. Mitochondrial evolution. Science 1999, 283:1476-1481.
    • (1999) Science , vol.283 , pp. 1476-1481
    • Gray, M.W.1
  • 98
    • 44949213867 scopus 로고    scopus 로고
    • Plastid evolution
    • Gould S.B., et al. Plastid evolution. Annu. Rev. Plant Biol. 2008, 59:491-517.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 491-517
    • Gould, S.B.1
  • 99
    • 68749112707 scopus 로고    scopus 로고
    • Importing mitochondrial proteins: machineries and mechanisms
    • Chacinska A., et al. Importing mitochondrial proteins: machineries and mechanisms. Cell 2009, 138:628-644.
    • (2009) Cell , vol.138 , pp. 628-644
    • Chacinska, A.1
  • 100
    • 27544466847 scopus 로고    scopus 로고
    • Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
    • Okamoto K., Shaw J.M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 2005, 39:503-536.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 503-536
    • Okamoto, K.1    Shaw, J.M.2
  • 101
    • 0036776905 scopus 로고    scopus 로고
    • Cutting edge of chloroplast proteolysis
    • Adam Z., Clarke A.K. Cutting edge of chloroplast proteolysis. Trends Plant Sci. 2002, 7:451-456.
    • (2002) Trends Plant Sci. , vol.7 , pp. 451-456
    • Adam, Z.1    Clarke, A.K.2
  • 102
    • 71749119260 scopus 로고    scopus 로고
    • Emerging roles of mitochondrial proteases in neurodegeneration
    • Martinelli P., Rugarli E.I. Emerging roles of mitochondrial proteases in neurodegeneration. Biochim. Biophys. Acta 2010, 1797:1-10.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1-10
    • Martinelli, P.1    Rugarli, E.I.2
  • 103
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 104
    • 56749176947 scopus 로고    scopus 로고
    • One step at a time: endoplasmic reticulum-associated degradation
    • Vembar S.S., Brodsky J.L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 2008, 9:944-957.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 944-957
    • Vembar, S.S.1    Brodsky, J.L.2
  • 105
    • 33746675669 scopus 로고    scopus 로고
    • Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator
    • Younger J.M., et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 2006, 126:571-582.
    • (2006) Cell , vol.126 , pp. 571-582
    • Younger, J.M.1
  • 106
    • 84855872539 scopus 로고    scopus 로고
    • Abiotic stress tolerance mediated by protein ubiquitination
    • Lyzenga W.J., Stone S.L. Abiotic stress tolerance mediated by protein ubiquitination. J. Exp. Bot. 2012, 63:599-616.
    • (2012) J. Exp. Bot. , vol.63 , pp. 599-616
    • Lyzenga, W.J.1    Stone, S.L.2
  • 107
    • 59849097652 scopus 로고    scopus 로고
    • Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses
    • Saibo N.J., et al. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann. Bot. 2009, 103:609-623.
    • (2009) Ann. Bot. , vol.103 , pp. 609-623
    • Saibo, N.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.