-
1
-
-
0030267548
-
Proteolysis in plants: mechanisms and functions
-
Vierstra R.D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 1996, 32:275-302.
-
(1996)
Plant Mol. Biol.
, vol.32
, pp. 275-302
-
-
Vierstra, R.D.1
-
2
-
-
3242665372
-
The ubiquitin 26S proteasome proteolytic pathway
-
Smalle J., Vierstra R.D. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 2004, 55:555-590.
-
(2004)
Annu. Rev. Plant Biol.
, vol.55
, pp. 555-590
-
-
Smalle, J.1
Vierstra, R.D.2
-
3
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
4
-
-
35648962331
-
Plant autophagy: more than a starvation response
-
Bassham D.C. Plant autophagy: more than a starvation response. Curr. Opin. Plant Biol. 2007, 10:587-593.
-
(2007)
Curr. Opin. Plant Biol.
, vol.10
, pp. 587-593
-
-
Bassham, D.C.1
-
5
-
-
34250897234
-
Ubiquitin, hormones and biotic stress in plants
-
Dreher K., Callis J. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 2007, 99:787-822.
-
(2007)
Ann. Bot.
, vol.99
, pp. 787-822
-
-
Dreher, K.1
Callis, J.2
-
6
-
-
69349103147
-
Function and regulation of macroautophagy in plants
-
Bassham D.C. Function and regulation of macroautophagy in plants. Biochim. Biophys. Acta 2009, 1793:1397-1403.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 1397-1403
-
-
Bassham, D.C.1
-
7
-
-
67349254570
-
The ubiquitin-26S proteasome system at the nexus of plant biology
-
Vierstra R.D. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 2009, 10:385-397.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 385-397
-
-
Vierstra, R.D.1
-
8
-
-
14744281878
-
Autophagic recycling: lessons from yeast help define the process in plants
-
Thompson A.R., Vierstra R.D. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 2005, 8:165-173.
-
(2005)
Curr. Opin. Plant Biol.
, vol.8
, pp. 165-173
-
-
Thompson, A.R.1
Vierstra, R.D.2
-
9
-
-
79955642715
-
The cullin-RING ubiquitin-protein ligases
-
Hua Z., Vierstra R.D. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 2011, 62:299-334.
-
(2011)
Annu. Rev. Plant Biol.
, vol.62
, pp. 299-334
-
-
Hua, Z.1
Vierstra, R.D.2
-
10
-
-
35448981935
-
Autophagy: from phenomenology to molecular understanding in less than a decade
-
Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 2007, 8:931-937.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 931-937
-
-
Klionsky, D.J.1
-
11
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends C., et al. Network organization of the human autophagy system. Nature 2010, 466:68-76.
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
-
12
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
13
-
-
67949122010
-
Turnover of organelles by autophagy in yeast
-
Farre J.C., et al. Turnover of organelles by autophagy in yeast. Curr. Opin. Cell Biol. 2009, 21:522-530.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 522-530
-
-
Farre, J.C.1
-
14
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
15
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
-
16
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333:228-233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
17
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
Thurston T.L., et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482:414-418.
-
(2012)
Nature
, vol.482
, pp. 414-418
-
-
Thurston, T.L.1
-
18
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 2009, 183:5909-5916.
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
-
19
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl A., et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480:113-117.
-
(2011)
Nature
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
-
20
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10:1215-1221.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
-
21
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M., et al. Escape of intracellular Shigella from autophagy. Science 2005, 307:727-731.
-
(2005)
Science
, vol.307
, pp. 727-731
-
-
Ogawa, M.1
-
22
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
Yoshikawa Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 2009, 11:1233-1240.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1233-1240
-
-
Yoshikawa, Y.1
-
23
-
-
79959739211
-
Manipulation of autophagy by bacteria for their own benefit
-
Ogawa M., et al. Manipulation of autophagy by bacteria for their own benefit. Microbiol. Immunol. 2011, 55:459-471.
-
(2011)
Microbiol. Immunol.
, vol.55
, pp. 459-471
-
-
Ogawa, M.1
-
24
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: lessons from yeast
-
Nakatogawa H., et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009, 10:458-467.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
-
25
-
-
0348052521
-
Cytoplasm to vacuole targeting
-
Landes Bioscience, D.J. Klionsky (Ed.)
-
Stromberg P.E., Klionsky D.J. Cytoplasm to vacuole targeting. Autophagy 2004, 84-106. Landes Bioscience. D.J. Klionsky (Ed.).
-
(2004)
Autophagy
, pp. 84-106
-
-
Stromberg, P.E.1
Klionsky, D.J.2
-
26
-
-
33645930028
-
Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells
-
Toyooka K., et al. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2006, 2:96-106.
-
(2006)
Autophagy
, vol.2
, pp. 96-106
-
-
Toyooka, K.1
-
27
-
-
0029036915
-
Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae
-
Noda T., et al. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1995, 210:126-132.
-
(1995)
Biochem. Biophys. Res. Commun.
, vol.210
, pp. 126-132
-
-
Noda, T.1
-
28
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333:169-174.
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
29
-
-
0032895859
-
Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein
-
Yuan W., et al. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol. Biol. Cell 1999, 10:1353-1366.
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 1353-1366
-
-
Yuan, W.1
-
30
-
-
0028800171
-
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
-
Harding T.M., et al. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 1995, 131:591-602.
-
(1995)
J. Cell Biol.
, vol.131
, pp. 591-602
-
-
Harding, T.M.1
-
31
-
-
0035286734
-
Molecular dissection of autophagy: two ubiquitin-like systems
-
Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001, 2:211-216.
-
(2001)
Nat. Rev. Mol. Cell Biol.
, vol.2
, pp. 211-216
-
-
Ohsumi, Y.1
-
32
-
-
33846514235
-
Hierarchy of Atg proteins in pre-autophagosomal structure organization
-
Suzuki K., et al. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007, 12:209-218.
-
(2007)
Genes Cells
, vol.12
, pp. 209-218
-
-
Suzuki, K.1
-
33
-
-
1842767362
-
3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions
-
Takatsuka C., et al. 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol. 2004, 45:265-274.
-
(2004)
Plant Cell Physiol.
, vol.45
, pp. 265-274
-
-
Takatsuka, C.1
-
34
-
-
38049098543
-
The ATG12-ATG5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T., et al. The ATG12-ATG5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 2007, 282:37298-37302.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37298-37302
-
-
Hanada, T.1
-
35
-
-
77950956398
-
ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12a and ATG12b loci
-
Chung T., et al. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12a and ATG12b loci. Plant J. 2010, 62:483-493.
-
(2010)
Plant J.
, vol.62
, pp. 483-493
-
-
Chung, T.1
-
36
-
-
0034676037
-
The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
-
Kirisako T., et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 2000, 151:263-276.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 263-276
-
-
Kirisako, T.1
-
37
-
-
77955637249
-
ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death
-
Radoshevich L., et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 2010, 142:590-600.
-
(2010)
Cell
, vol.142
, pp. 590-600
-
-
Radoshevich, L.1
-
38
-
-
14744268915
-
Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy
-
Yoshimoto K., et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 2004, 16:2967-2983.
-
(2004)
Plant Cell
, vol.16
, pp. 2967-2983
-
-
Yoshimoto, K.1
-
39
-
-
33644594726
-
Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways
-
Thompson A.R., et al. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 2005, 138:2097-2110.
-
(2005)
Plant Physiol.
, vol.138
, pp. 2097-2110
-
-
Thompson, A.R.1
-
40
-
-
0037031843
-
The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana
-
Doelling J.H., et al. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 2002, 277:33105-33114.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 33105-33114
-
-
Doelling, J.H.1
-
41
-
-
58449118073
-
The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability
-
Chung T., et al. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol. 2009, 149:220-234.
-
(2009)
Plant Physiol.
, vol.149
, pp. 220-234
-
-
Chung, T.1
-
42
-
-
45149130031
-
The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana
-
Phillips A.R., et al. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008, 178:1339-1353.
-
(2008)
Genetics
, vol.178
, pp. 1339-1353
-
-
Phillips, A.R.1
-
43
-
-
82755166963
-
The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis
-
Suttangkakul A., et al. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 2011, 23:3761-3779.
-
(2011)
Plant Cell
, vol.23
, pp. 3761-3779
-
-
Suttangkakul, A.1
-
44
-
-
79959978116
-
Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
-
Lenz H.D., et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011, 66:818-830.
-
(2011)
Plant J.
, vol.66
, pp. 818-830
-
-
Lenz, H.D.1
-
45
-
-
79953088489
-
Delivery of prolamins to the protein storage vacuole in maize aleurone cells
-
Reyes F.C., et al. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 2011, 23:769-784.
-
(2011)
Plant Cell
, vol.23
, pp. 769-784
-
-
Reyes, F.C.1
-
46
-
-
0035983934
-
Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene
-
Hanaoka H., et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002, 129:1181-1193.
-
(2002)
Plant Physiol.
, vol.129
, pp. 1181-1193
-
-
Hanaoka, H.1
-
47
-
-
10744230357
-
The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways
-
Surpin M., et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 2003, 15:2885-2899.
-
(2003)
Plant Cell
, vol.15
, pp. 2885-2899
-
-
Surpin, M.1
-
48
-
-
19444366819
-
AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana
-
Xiong Y., et al. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005, 42:535-546.
-
(2005)
Plant J.
, vol.42
, pp. 535-546
-
-
Xiong, Y.1
-
49
-
-
33845693003
-
AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells
-
Inoue Y., et al. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 2006, 47:1641-1652.
-
(2006)
Plant Cell Physiol.
, vol.47
, pp. 1641-1652
-
-
Inoue, Y.1
-
50
-
-
33947331773
-
Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development
-
Qin G., et al. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 2007, 17:249-263.
-
(2007)
Cell Res.
, vol.17
, pp. 249-263
-
-
Qin, G.1
-
51
-
-
33644590635
-
The crystal structure of plant ATG12 and its biological implication in autophagy
-
Suzuki N.N., et al. The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 2005, 1:119-126.
-
(2005)
Autophagy
, vol.1
, pp. 119-126
-
-
Suzuki, N.N.1
-
52
-
-
0027942615
-
AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain
-
Welters P., et al. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:11398-11402.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 11398-11402
-
-
Welters, P.1
-
53
-
-
34447108280
-
Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance
-
Leshem Y., et al. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 2007, 51:185-197.
-
(2007)
Plant J.
, vol.51
, pp. 185-197
-
-
Leshem, Y.1
-
54
-
-
77955608570
-
TOR is a negative regulator of autophagy in Arabidopsis thaliana
-
Liu Y., Bassham D.C. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE 2010, 5:e11883.
-
(2010)
PLoS ONE
, vol.5
-
-
Liu, Y.1
Bassham, D.C.2
-
55
-
-
38349152489
-
In vitro reconstitution of plant ATG8 and ATG12 conjugation systems essential for autophagy
-
Fujioka Y., et al. In vitro reconstitution of plant ATG8 and ATG12 conjugation systems essential for autophagy. J. Biol. Chem. 2008, 283:1921-1928.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 1921-1928
-
-
Fujioka, Y.1
-
56
-
-
80054703637
-
Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.)
-
Xia K., et al. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 2011, 18:363-377.
-
(2011)
DNA Res.
, vol.18
, pp. 363-377
-
-
Xia, K.1
-
57
-
-
84858341692
-
Variations on a theme: plant autophagy in comparison to yeast and mammals
-
Avin-Wittenberg T., et al. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 2011, 249:285-299.
-
(2011)
Protoplasma
, vol.249
, pp. 285-299
-
-
Avin-Wittenberg, T.1
-
58
-
-
80053390952
-
Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors
-
Zientara-Rytter K., et al. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 2011, 7:1145-1158.
-
(2011)
Autophagy
, vol.7
, pp. 1145-1158
-
-
Zientara-Rytter, K.1
-
59
-
-
62849123596
-
OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice
-
Shin J.H., et al. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol. Cell 2009, 27:67-74.
-
(2009)
Mol. Cell
, vol.27
, pp. 67-74
-
-
Shin, J.H.1
-
60
-
-
51249115364
-
Autophagy regulated by day length determines the number of fertile florets in wheat
-
Ghiglione H.O., et al. Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J. 2008, 55:1010-1024.
-
(2008)
Plant J.
, vol.55
, pp. 1010-1024
-
-
Ghiglione, H.O.1
-
61
-
-
84859608281
-
Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis
-
Guiboileau A., et al. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 2012, 194:732-740.
-
(2012)
New Phytol.
, vol.194
, pp. 732-740
-
-
Guiboileau, A.1
-
62
-
-
4444288688
-
Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation
-
Contento A.L., et al. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol. 2004, 135:2330-2347.
-
(2004)
Plant Physiol.
, vol.135
, pp. 2330-2347
-
-
Contento, A.L.1
-
63
-
-
27144491614
-
The autophagy-associated ATG8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants
-
Sláviková S., et al. The autophagy-associated ATG8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J. Exp. Bot. 2005, 56:2839-2849.
-
(2005)
J. Exp. Bot.
, vol.56
, pp. 2839-2849
-
-
Sláviková, S.1
-
64
-
-
79955626693
-
High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation
-
Breeze E., et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 2011, 23:873-894.
-
(2011)
Plant Cell
, vol.23
, pp. 873-894
-
-
Breeze, E.1
-
65
-
-
55549117167
-
Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process
-
Ishida H., et al. Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol. 2008, 148:142-155.
-
(2008)
Plant Physiol.
, vol.148
, pp. 142-155
-
-
Ishida, H.1
-
66
-
-
60249083823
-
Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
-
Wada S., et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009, 149:885-893.
-
(2009)
Plant Physiol.
, vol.149
, pp. 885-893
-
-
Wada, S.1
-
67
-
-
79551615012
-
RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants
-
Hillwig M.S., et al. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1093-1098.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 1093-1098
-
-
Hillwig, M.S.1
-
68
-
-
34248593471
-
Disruption of autophagy results in constitutive oxidative stress in Arabidopsis
-
Xiong Y., et al. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 2007, 3:257-258.
-
(2007)
Autophagy
, vol.3
, pp. 257-258
-
-
Xiong, Y.1
-
69
-
-
79953100002
-
The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism
-
Vanhee C., et al. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 2011, 23:785-805.
-
(2011)
Plant Cell
, vol.23
, pp. 785-805
-
-
Vanhee, C.1
-
70
-
-
41449112760
-
Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana
-
Harrison-Lowe N.J., Olsen L.J. Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 2008, 4:339-348.
-
(2008)
Autophagy
, vol.4
, pp. 339-348
-
-
Harrison-Lowe, N.J.1
Olsen, L.J.2
-
71
-
-
53749095272
-
The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development
-
Lee Y., et al. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 2008, 147:1886-1897.
-
(2008)
Plant Physiol.
, vol.147
, pp. 1886-1897
-
-
Lee, Y.1
-
72
-
-
34250669930
-
An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination
-
Fujiki Y., et al. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 2007, 143:1132-1139.
-
(2007)
Plant Physiol.
, vol.143
, pp. 1132-1139
-
-
Fujiki, Y.1
-
73
-
-
10644292652
-
An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development
-
Deprost D., et al. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem. Biophys. Res. Commun. 2005, 326:844-850.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.326
, pp. 844-850
-
-
Deprost, D.1
-
74
-
-
0037197930
-
Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene
-
Menand B., et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:6422-6427.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 6422-6427
-
-
Menand, B.1
-
75
-
-
35548994465
-
The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation
-
Deprost D., et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 2007, 8:864-870.
-
(2007)
EMBO Rep.
, vol.8
, pp. 864-870
-
-
Deprost, D.1
-
76
-
-
84856068242
-
Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants
-
Xiong Y., Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J. Biol. Chem. 2012, 287:2836-2842.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2836-2842
-
-
Xiong, Y.1
Sheen, J.2
-
77
-
-
70449686390
-
Autophagy and plant innate immunity: defense through degradation
-
Hayward A.P., et al. Autophagy and plant innate immunity: defense through degradation. Semin. Cell. Dev. Biol. 2009, 20:1041-1047.
-
(2009)
Semin. Cell. Dev. Biol.
, vol.20
, pp. 1041-1047
-
-
Hayward, A.P.1
-
78
-
-
19344368318
-
Autophagy regulates programmed cell death during the plant innate immune response
-
Liu Y., et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005, 121:567-577.
-
(2005)
Cell
, vol.121
, pp. 567-577
-
-
Liu, Y.1
-
79
-
-
38049001895
-
Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
-
Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008, 4:20-27.
-
(2008)
Autophagy
, vol.4
, pp. 20-27
-
-
Patel, S.1
Dinesh-Kumar, S.P.2
-
80
-
-
70849127320
-
Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
-
Yoshimoto K., et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009, 21:2914-2927.
-
(2009)
Plant Cell
, vol.21
, pp. 2914-2927
-
-
Yoshimoto, K.1
-
81
-
-
65549157489
-
Autophagic components contribute to hypersensitive cell death in Arabidopsis
-
Hofius D., et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009, 137:773-783.
-
(2009)
Cell
, vol.137
, pp. 773-783
-
-
Hofius, D.1
-
82
-
-
79959974118
-
ATG7 contributes to plant basal immunity toward fungal pathogens
-
Lenz H.D., et al. ATG7 contributes to plant basal immunity toward fungal pathogens. Plant Signal. Behav. 2011, 6:1040-1042.
-
(2011)
Plant Signal. Behav.
, vol.6
, pp. 1040-1042
-
-
Lenz, H.D.1
-
83
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H., et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29:1792-1802.
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
-
84
-
-
84865595452
-
Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic receptor NBR1 and p62/SQSTM1
-
Svenning S., et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic receptor NBR1 and p62/SQSTM1. Autophagy 2011, 7:1-18.
-
(2011)
Autophagy
, vol.7
, pp. 1-18
-
-
Svenning, S.1
-
85
-
-
84857758872
-
A new type of compartment, defined by plant-specific ATG8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation
-
Honig A., et al. A new type of compartment, defined by plant-specific ATG8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 2012, 24:288-303.
-
(2012)
Plant Cell
, vol.24
, pp. 288-303
-
-
Honig, A.1
-
86
-
-
33846378524
-
Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis
-
Xiong Y., et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007, 143:291-299.
-
(2007)
Plant Physiol.
, vol.143
, pp. 291-299
-
-
Xiong, Y.1
-
87
-
-
0029798980
-
Autophagy in tobacco suspension-cultured cells in response to sucrose starvation
-
Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 1996, 111:1233-1241.
-
(1996)
Plant Physiol.
, vol.111
, pp. 1233-1241
-
-
Moriyasu, Y.1
Ohsumi, Y.2
-
88
-
-
0031775092
-
Barley aleurone cells contain two types of vacuoles. Characterization of lytic organelles by use of fluorescent probes
-
Swanson S.J., et al. Barley aleurone cells contain two types of vacuoles. Characterization of lytic organelles by use of fluorescent probes. Plant Cell 1998, 10:685-698.
-
(1998)
Plant Cell
, vol.10
, pp. 685-698
-
-
Swanson, S.J.1
-
89
-
-
19444370899
-
Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein
-
Contento A.L., et al. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 2005, 42:598-608.
-
(2005)
Plant J.
, vol.42
, pp. 598-608
-
-
Contento, A.L.1
-
90
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
-
91
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy
-
Noda N.N., et al. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010, 584:1379-1385.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
-
92
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy
-
Noda N.N., et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 2008, 13:1211-1218.
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
-
93
-
-
80052194357
-
Let's go bananas: revisiting the endocytic BAR code
-
Qualmann B., et al. Let's go bananas: revisiting the endocytic BAR code. EMBO J. 2011, 30:3501-3515.
-
(2011)
EMBO J.
, vol.30
, pp. 3501-3515
-
-
Qualmann, B.1
-
94
-
-
72149095496
-
SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination
-
Trempe J.F., et al. SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol. Cell 2009, 36:1034-1047.
-
(2009)
Mol. Cell
, vol.36
, pp. 1034-1047
-
-
Trempe, J.F.1
-
95
-
-
77953708505
-
FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors
-
Pankiv S., Johansen T. FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors. Autophagy 2010, 6:550-552.
-
(2010)
Autophagy
, vol.6
, pp. 550-552
-
-
Pankiv, S.1
Johansen, T.2
-
96
-
-
76149086512
-
FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
-
Pankiv S., et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 2010, 188:253-269.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 253-269
-
-
Pankiv, S.1
-
97
-
-
77955081078
-
Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana
-
Wywial E., Singh S.M. Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol. 2010, 10:157.
-
(2010)
BMC Plant Biol.
, vol.10
, pp. 157
-
-
Wywial, E.1
Singh, S.M.2
-
98
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki T., et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 2009, 17:98-109.
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
-
99
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto K., et al. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 2009, 17:87-97.
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
-
100
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval H., et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008, 454:232-235.
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
-
101
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 2009, 33:505-516.
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
-
102
-
-
65549142204
-
A role for ubiquitin in selective autophagy
-
Kirkin V., et al. A role for ubiquitin in selective autophagy. Mol. Cell 2009, 34:259-269.
-
(2009)
Mol. Cell
, vol.34
, pp. 259-269
-
-
Kirkin, V.1
-
103
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282:24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
-
104
-
-
0034616943
-
Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain
-
Spence J., et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 2000, 102:67-76.
-
(2000)
Cell
, vol.102
, pp. 67-76
-
-
Spence, J.1
-
105
-
-
77955485244
-
Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes
-
Book A.J., et al. Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J. Biol. Chem. 2010, 285:25554-25569.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 25554-25569
-
-
Book, A.J.1
-
106
-
-
27944504351
-
P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death
-
Bjorkoy G., et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death. J. Cell Biol. 2005, 171:603-614.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 603-614
-
-
Bjorkoy, G.1
-
107
-
-
52649121942
-
The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes
-
Shvets E., et al. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 2008, 121:2685-2695.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2685-2695
-
-
Shvets, E.1
-
108
-
-
67650517556
-
NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
-
Lamark T., et al. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 2009, 8:1986-1990.
-
(2009)
Cell Cycle
, vol.8
, pp. 1986-1990
-
-
Lamark, T.1
-
109
-
-
0141445968
-
Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins
-
Lamark T., et al. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J. Biol. Chem. 2003, 278:34568-34581.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 34568-34581
-
-
Lamark, T.1
-
110
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S., et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
-
111
-
-
77955023765
-
Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy
-
Rothenberg C., et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum. Mol. Genet. 2010, 19:3219-3232.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 3219-3232
-
-
Rothenberg, C.1
-
112
-
-
77950363988
-
The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis
-
Farmer L.M., et al. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell 2010, 22:124-142.
-
(2010)
Plant Cell
, vol.22
, pp. 124-142
-
-
Farmer, L.M.1
-
113
-
-
80052631811
-
The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h
-
Devarenne T.P. The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h. Biochem. Biophys. Res. Commun. 2011, 412:699-703.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.412
, pp. 699-703
-
-
Devarenne, T.P.1
-
114
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Nishida Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009, 461:654-658.
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
-
115
-
-
84255169600
-
Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling
-
Sandilands E., et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol. 2012, 14:51-60.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 51-60
-
-
Sandilands, E.1
-
116
-
-
77955172368
-
Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation
-
Gao C., et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol. 2010, 12:781-790.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 781-790
-
-
Gao, C.1
-
117
-
-
58249085224
-
SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans
-
Zhang Y., et al. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 2009, 136:308-321.
-
(2009)
Cell
, vol.136
, pp. 308-321
-
-
Zhang, Y.1
-
118
-
-
77956499358
-
Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway
-
Yamaguchi M., et al. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 2010, 285:29599-29607.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 29599-29607
-
-
Yamaguchi, M.1
-
119
-
-
65649136884
-
The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy
-
Satoo K., et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009, 28:1341-1350.
-
(2009)
EMBO J.
, vol.28
, pp. 1341-1350
-
-
Satoo, K.1
-
120
-
-
37249005256
-
Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein
-
Mohrluder J., et al. Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein. Biochemistry 2007, 46:14537-14543.
-
(2007)
Biochemistry
, vol.46
, pp. 14537-14543
-
-
Mohrluder, J.1
-
121
-
-
35448936487
-
Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library
-
Mohrluder J., et al. Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J. 2007, 274:5543-5555.
-
(2007)
FEBS J.
, vol.274
, pp. 5543-5555
-
-
Mohrluder, J.1
|