메뉴 건너뛰기




Volumn 17, Issue 9, 2012, Pages 526-537

Autophagy: A multifaceted intracellular system for bulk and selective recycling

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS PROTEIN; VEGETABLE PROTEIN;

EID: 84865596150     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2012.05.006     Document Type: Review
Times cited : (311)

References (121)
  • 1
    • 0030267548 scopus 로고    scopus 로고
    • Proteolysis in plants: mechanisms and functions
    • Vierstra R.D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 1996, 32:275-302.
    • (1996) Plant Mol. Biol. , vol.32 , pp. 275-302
    • Vierstra, R.D.1
  • 2
    • 3242665372 scopus 로고    scopus 로고
    • The ubiquitin 26S proteasome proteolytic pathway
    • Smalle J., Vierstra R.D. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 2004, 55:555-590.
    • (2004) Annu. Rev. Plant Biol. , vol.55 , pp. 555-590
    • Smalle, J.1    Vierstra, R.D.2
  • 3
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 4
    • 35648962331 scopus 로고    scopus 로고
    • Plant autophagy: more than a starvation response
    • Bassham D.C. Plant autophagy: more than a starvation response. Curr. Opin. Plant Biol. 2007, 10:587-593.
    • (2007) Curr. Opin. Plant Biol. , vol.10 , pp. 587-593
    • Bassham, D.C.1
  • 5
    • 34250897234 scopus 로고    scopus 로고
    • Ubiquitin, hormones and biotic stress in plants
    • Dreher K., Callis J. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 2007, 99:787-822.
    • (2007) Ann. Bot. , vol.99 , pp. 787-822
    • Dreher, K.1    Callis, J.2
  • 6
    • 69349103147 scopus 로고    scopus 로고
    • Function and regulation of macroautophagy in plants
    • Bassham D.C. Function and regulation of macroautophagy in plants. Biochim. Biophys. Acta 2009, 1793:1397-1403.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 1397-1403
    • Bassham, D.C.1
  • 7
    • 67349254570 scopus 로고    scopus 로고
    • The ubiquitin-26S proteasome system at the nexus of plant biology
    • Vierstra R.D. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 2009, 10:385-397.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 385-397
    • Vierstra, R.D.1
  • 8
    • 14744281878 scopus 로고    scopus 로고
    • Autophagic recycling: lessons from yeast help define the process in plants
    • Thompson A.R., Vierstra R.D. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 2005, 8:165-173.
    • (2005) Curr. Opin. Plant Biol. , vol.8 , pp. 165-173
    • Thompson, A.R.1    Vierstra, R.D.2
  • 9
    • 79955642715 scopus 로고    scopus 로고
    • The cullin-RING ubiquitin-protein ligases
    • Hua Z., Vierstra R.D. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 2011, 62:299-334.
    • (2011) Annu. Rev. Plant Biol. , vol.62 , pp. 299-334
    • Hua, Z.1    Vierstra, R.D.2
  • 10
    • 35448981935 scopus 로고    scopus 로고
    • Autophagy: from phenomenology to molecular understanding in less than a decade
    • Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 2007, 8:931-937.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 931-937
    • Klionsky, D.J.1
  • 11
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C., et al. Network organization of the human autophagy system. Nature 2010, 466:68-76.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1
  • 12
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 13
    • 67949122010 scopus 로고    scopus 로고
    • Turnover of organelles by autophagy in yeast
    • Farre J.C., et al. Turnover of organelles by autophagy in yeast. Curr. Opin. Cell Biol. 2009, 21:522-530.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 522-530
    • Farre, J.C.1
  • 14
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 15
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1
  • 16
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333:228-233.
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 17
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston T.L., et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482:414-418.
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.1
  • 18
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • Zheng Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 2009, 183:5909-5916.
    • (2009) J. Immunol. , vol.183 , pp. 5909-5916
    • Zheng, Y.T.1
  • 19
    • 82555187810 scopus 로고    scopus 로고
    • Image-based genome-wide siRNA screen identifies selective autophagy factors
    • Orvedahl A., et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480:113-117.
    • (2011) Nature , vol.480 , pp. 113-117
    • Orvedahl, A.1
  • 20
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10:1215-1221.
    • (2009) Nat. Immunol. , vol.10 , pp. 1215-1221
    • Thurston, T.L.1
  • 21
    • 13244256806 scopus 로고    scopus 로고
    • Escape of intracellular Shigella from autophagy
    • Ogawa M., et al. Escape of intracellular Shigella from autophagy. Science 2005, 307:727-731.
    • (2005) Science , vol.307 , pp. 727-731
    • Ogawa, M.1
  • 22
    • 70349652310 scopus 로고    scopus 로고
    • Listeria monocytogenes ActA-mediated escape from autophagic recognition
    • Yoshikawa Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 2009, 11:1233-1240.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1233-1240
    • Yoshikawa, Y.1
  • 23
    • 79959739211 scopus 로고    scopus 로고
    • Manipulation of autophagy by bacteria for their own benefit
    • Ogawa M., et al. Manipulation of autophagy by bacteria for their own benefit. Microbiol. Immunol. 2011, 55:459-471.
    • (2011) Microbiol. Immunol. , vol.55 , pp. 459-471
    • Ogawa, M.1
  • 24
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: lessons from yeast
    • Nakatogawa H., et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009, 10:458-467.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 458-467
    • Nakatogawa, H.1
  • 25
    • 0348052521 scopus 로고    scopus 로고
    • Cytoplasm to vacuole targeting
    • Landes Bioscience, D.J. Klionsky (Ed.)
    • Stromberg P.E., Klionsky D.J. Cytoplasm to vacuole targeting. Autophagy 2004, 84-106. Landes Bioscience. D.J. Klionsky (Ed.).
    • (2004) Autophagy , pp. 84-106
    • Stromberg, P.E.1    Klionsky, D.J.2
  • 26
    • 33645930028 scopus 로고    scopus 로고
    • Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells
    • Toyooka K., et al. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2006, 2:96-106.
    • (2006) Autophagy , vol.2 , pp. 96-106
    • Toyooka, K.1
  • 27
    • 0029036915 scopus 로고
    • Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae
    • Noda T., et al. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1995, 210:126-132.
    • (1995) Biochem. Biophys. Res. Commun. , vol.210 , pp. 126-132
    • Noda, T.1
  • 28
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333:169-174.
    • (1993) FEBS Lett. , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 29
    • 0032895859 scopus 로고    scopus 로고
    • Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein
    • Yuan W., et al. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol. Biol. Cell 1999, 10:1353-1366.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1353-1366
    • Yuan, W.1
  • 30
    • 0028800171 scopus 로고
    • Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
    • Harding T.M., et al. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 1995, 131:591-602.
    • (1995) J. Cell Biol. , vol.131 , pp. 591-602
    • Harding, T.M.1
  • 31
    • 0035286734 scopus 로고    scopus 로고
    • Molecular dissection of autophagy: two ubiquitin-like systems
    • Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001, 2:211-216.
    • (2001) Nat. Rev. Mol. Cell Biol. , vol.2 , pp. 211-216
    • Ohsumi, Y.1
  • 32
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of Atg proteins in pre-autophagosomal structure organization
    • Suzuki K., et al. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007, 12:209-218.
    • (2007) Genes Cells , vol.12 , pp. 209-218
    • Suzuki, K.1
  • 33
    • 1842767362 scopus 로고    scopus 로고
    • 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions
    • Takatsuka C., et al. 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol. 2004, 45:265-274.
    • (2004) Plant Cell Physiol. , vol.45 , pp. 265-274
    • Takatsuka, C.1
  • 34
    • 38049098543 scopus 로고    scopus 로고
    • The ATG12-ATG5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T., et al. The ATG12-ATG5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 2007, 282:37298-37302.
    • (2007) J. Biol. Chem. , vol.282 , pp. 37298-37302
    • Hanada, T.1
  • 35
    • 77950956398 scopus 로고    scopus 로고
    • ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12a and ATG12b loci
    • Chung T., et al. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12a and ATG12b loci. Plant J. 2010, 62:483-493.
    • (2010) Plant J. , vol.62 , pp. 483-493
    • Chung, T.1
  • 36
    • 0034676037 scopus 로고    scopus 로고
    • The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
    • Kirisako T., et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 2000, 151:263-276.
    • (2000) J. Cell Biol. , vol.151 , pp. 263-276
    • Kirisako, T.1
  • 37
    • 77955637249 scopus 로고    scopus 로고
    • ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death
    • Radoshevich L., et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 2010, 142:590-600.
    • (2010) Cell , vol.142 , pp. 590-600
    • Radoshevich, L.1
  • 38
    • 14744268915 scopus 로고    scopus 로고
    • Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy
    • Yoshimoto K., et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 2004, 16:2967-2983.
    • (2004) Plant Cell , vol.16 , pp. 2967-2983
    • Yoshimoto, K.1
  • 39
    • 33644594726 scopus 로고    scopus 로고
    • Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways
    • Thompson A.R., et al. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 2005, 138:2097-2110.
    • (2005) Plant Physiol. , vol.138 , pp. 2097-2110
    • Thompson, A.R.1
  • 40
    • 0037031843 scopus 로고    scopus 로고
    • The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana
    • Doelling J.H., et al. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 2002, 277:33105-33114.
    • (2002) J. Biol. Chem. , vol.277 , pp. 33105-33114
    • Doelling, J.H.1
  • 41
    • 58449118073 scopus 로고    scopus 로고
    • The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability
    • Chung T., et al. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol. 2009, 149:220-234.
    • (2009) Plant Physiol. , vol.149 , pp. 220-234
    • Chung, T.1
  • 42
    • 45149130031 scopus 로고    scopus 로고
    • The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana
    • Phillips A.R., et al. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008, 178:1339-1353.
    • (2008) Genetics , vol.178 , pp. 1339-1353
    • Phillips, A.R.1
  • 43
    • 82755166963 scopus 로고    scopus 로고
    • The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis
    • Suttangkakul A., et al. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 2011, 23:3761-3779.
    • (2011) Plant Cell , vol.23 , pp. 3761-3779
    • Suttangkakul, A.1
  • 44
    • 79959978116 scopus 로고    scopus 로고
    • Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
    • Lenz H.D., et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011, 66:818-830.
    • (2011) Plant J. , vol.66 , pp. 818-830
    • Lenz, H.D.1
  • 45
    • 79953088489 scopus 로고    scopus 로고
    • Delivery of prolamins to the protein storage vacuole in maize aleurone cells
    • Reyes F.C., et al. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 2011, 23:769-784.
    • (2011) Plant Cell , vol.23 , pp. 769-784
    • Reyes, F.C.1
  • 46
    • 0035983934 scopus 로고    scopus 로고
    • Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene
    • Hanaoka H., et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002, 129:1181-1193.
    • (2002) Plant Physiol. , vol.129 , pp. 1181-1193
    • Hanaoka, H.1
  • 47
    • 10744230357 scopus 로고    scopus 로고
    • The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways
    • Surpin M., et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 2003, 15:2885-2899.
    • (2003) Plant Cell , vol.15 , pp. 2885-2899
    • Surpin, M.1
  • 48
    • 19444366819 scopus 로고    scopus 로고
    • AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana
    • Xiong Y., et al. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005, 42:535-546.
    • (2005) Plant J. , vol.42 , pp. 535-546
    • Xiong, Y.1
  • 49
    • 33845693003 scopus 로고    scopus 로고
    • AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells
    • Inoue Y., et al. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 2006, 47:1641-1652.
    • (2006) Plant Cell Physiol. , vol.47 , pp. 1641-1652
    • Inoue, Y.1
  • 50
    • 33947331773 scopus 로고    scopus 로고
    • Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development
    • Qin G., et al. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 2007, 17:249-263.
    • (2007) Cell Res. , vol.17 , pp. 249-263
    • Qin, G.1
  • 51
    • 33644590635 scopus 로고    scopus 로고
    • The crystal structure of plant ATG12 and its biological implication in autophagy
    • Suzuki N.N., et al. The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 2005, 1:119-126.
    • (2005) Autophagy , vol.1 , pp. 119-126
    • Suzuki, N.N.1
  • 52
    • 0027942615 scopus 로고
    • AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain
    • Welters P., et al. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:11398-11402.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 11398-11402
    • Welters, P.1
  • 53
    • 34447108280 scopus 로고    scopus 로고
    • Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance
    • Leshem Y., et al. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 2007, 51:185-197.
    • (2007) Plant J. , vol.51 , pp. 185-197
    • Leshem, Y.1
  • 54
    • 77955608570 scopus 로고    scopus 로고
    • TOR is a negative regulator of autophagy in Arabidopsis thaliana
    • Liu Y., Bassham D.C. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE 2010, 5:e11883.
    • (2010) PLoS ONE , vol.5
    • Liu, Y.1    Bassham, D.C.2
  • 55
    • 38349152489 scopus 로고    scopus 로고
    • In vitro reconstitution of plant ATG8 and ATG12 conjugation systems essential for autophagy
    • Fujioka Y., et al. In vitro reconstitution of plant ATG8 and ATG12 conjugation systems essential for autophagy. J. Biol. Chem. 2008, 283:1921-1928.
    • (2008) J. Biol. Chem. , vol.283 , pp. 1921-1928
    • Fujioka, Y.1
  • 56
    • 80054703637 scopus 로고    scopus 로고
    • Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.)
    • Xia K., et al. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 2011, 18:363-377.
    • (2011) DNA Res. , vol.18 , pp. 363-377
    • Xia, K.1
  • 57
    • 84858341692 scopus 로고    scopus 로고
    • Variations on a theme: plant autophagy in comparison to yeast and mammals
    • Avin-Wittenberg T., et al. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 2011, 249:285-299.
    • (2011) Protoplasma , vol.249 , pp. 285-299
    • Avin-Wittenberg, T.1
  • 58
    • 80053390952 scopus 로고    scopus 로고
    • Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors
    • Zientara-Rytter K., et al. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 2011, 7:1145-1158.
    • (2011) Autophagy , vol.7 , pp. 1145-1158
    • Zientara-Rytter, K.1
  • 59
    • 62849123596 scopus 로고    scopus 로고
    • OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice
    • Shin J.H., et al. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol. Cell 2009, 27:67-74.
    • (2009) Mol. Cell , vol.27 , pp. 67-74
    • Shin, J.H.1
  • 60
    • 51249115364 scopus 로고    scopus 로고
    • Autophagy regulated by day length determines the number of fertile florets in wheat
    • Ghiglione H.O., et al. Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J. 2008, 55:1010-1024.
    • (2008) Plant J. , vol.55 , pp. 1010-1024
    • Ghiglione, H.O.1
  • 61
    • 84859608281 scopus 로고    scopus 로고
    • Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis
    • Guiboileau A., et al. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 2012, 194:732-740.
    • (2012) New Phytol. , vol.194 , pp. 732-740
    • Guiboileau, A.1
  • 62
    • 4444288688 scopus 로고    scopus 로고
    • Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation
    • Contento A.L., et al. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol. 2004, 135:2330-2347.
    • (2004) Plant Physiol. , vol.135 , pp. 2330-2347
    • Contento, A.L.1
  • 63
    • 27144491614 scopus 로고    scopus 로고
    • The autophagy-associated ATG8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants
    • Sláviková S., et al. The autophagy-associated ATG8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J. Exp. Bot. 2005, 56:2839-2849.
    • (2005) J. Exp. Bot. , vol.56 , pp. 2839-2849
    • Sláviková, S.1
  • 64
    • 79955626693 scopus 로고    scopus 로고
    • High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation
    • Breeze E., et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 2011, 23:873-894.
    • (2011) Plant Cell , vol.23 , pp. 873-894
    • Breeze, E.1
  • 65
    • 55549117167 scopus 로고    scopus 로고
    • Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process
    • Ishida H., et al. Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol. 2008, 148:142-155.
    • (2008) Plant Physiol. , vol.148 , pp. 142-155
    • Ishida, H.1
  • 66
    • 60249083823 scopus 로고    scopus 로고
    • Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
    • Wada S., et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009, 149:885-893.
    • (2009) Plant Physiol. , vol.149 , pp. 885-893
    • Wada, S.1
  • 67
    • 79551615012 scopus 로고    scopus 로고
    • RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants
    • Hillwig M.S., et al. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1093-1098.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1093-1098
    • Hillwig, M.S.1
  • 68
    • 34248593471 scopus 로고    scopus 로고
    • Disruption of autophagy results in constitutive oxidative stress in Arabidopsis
    • Xiong Y., et al. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 2007, 3:257-258.
    • (2007) Autophagy , vol.3 , pp. 257-258
    • Xiong, Y.1
  • 69
    • 79953100002 scopus 로고    scopus 로고
    • The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism
    • Vanhee C., et al. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 2011, 23:785-805.
    • (2011) Plant Cell , vol.23 , pp. 785-805
    • Vanhee, C.1
  • 70
    • 41449112760 scopus 로고    scopus 로고
    • Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana
    • Harrison-Lowe N.J., Olsen L.J. Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 2008, 4:339-348.
    • (2008) Autophagy , vol.4 , pp. 339-348
    • Harrison-Lowe, N.J.1    Olsen, L.J.2
  • 71
    • 53749095272 scopus 로고    scopus 로고
    • The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development
    • Lee Y., et al. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 2008, 147:1886-1897.
    • (2008) Plant Physiol. , vol.147 , pp. 1886-1897
    • Lee, Y.1
  • 72
    • 34250669930 scopus 로고    scopus 로고
    • An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination
    • Fujiki Y., et al. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 2007, 143:1132-1139.
    • (2007) Plant Physiol. , vol.143 , pp. 1132-1139
    • Fujiki, Y.1
  • 73
    • 10644292652 scopus 로고    scopus 로고
    • An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development
    • Deprost D., et al. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem. Biophys. Res. Commun. 2005, 326:844-850.
    • (2005) Biochem. Biophys. Res. Commun. , vol.326 , pp. 844-850
    • Deprost, D.1
  • 74
    • 0037197930 scopus 로고    scopus 로고
    • Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene
    • Menand B., et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:6422-6427.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 6422-6427
    • Menand, B.1
  • 75
    • 35548994465 scopus 로고    scopus 로고
    • The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation
    • Deprost D., et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 2007, 8:864-870.
    • (2007) EMBO Rep. , vol.8 , pp. 864-870
    • Deprost, D.1
  • 76
    • 84856068242 scopus 로고    scopus 로고
    • Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants
    • Xiong Y., Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J. Biol. Chem. 2012, 287:2836-2842.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2836-2842
    • Xiong, Y.1    Sheen, J.2
  • 77
    • 70449686390 scopus 로고    scopus 로고
    • Autophagy and plant innate immunity: defense through degradation
    • Hayward A.P., et al. Autophagy and plant innate immunity: defense through degradation. Semin. Cell. Dev. Biol. 2009, 20:1041-1047.
    • (2009) Semin. Cell. Dev. Biol. , vol.20 , pp. 1041-1047
    • Hayward, A.P.1
  • 78
    • 19344368318 scopus 로고    scopus 로고
    • Autophagy regulates programmed cell death during the plant innate immune response
    • Liu Y., et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005, 121:567-577.
    • (2005) Cell , vol.121 , pp. 567-577
    • Liu, Y.1
  • 79
    • 38049001895 scopus 로고    scopus 로고
    • Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
    • Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008, 4:20-27.
    • (2008) Autophagy , vol.4 , pp. 20-27
    • Patel, S.1    Dinesh-Kumar, S.P.2
  • 80
    • 70849127320 scopus 로고    scopus 로고
    • Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
    • Yoshimoto K., et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009, 21:2914-2927.
    • (2009) Plant Cell , vol.21 , pp. 2914-2927
    • Yoshimoto, K.1
  • 81
    • 65549157489 scopus 로고    scopus 로고
    • Autophagic components contribute to hypersensitive cell death in Arabidopsis
    • Hofius D., et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009, 137:773-783.
    • (2009) Cell , vol.137 , pp. 773-783
    • Hofius, D.1
  • 82
    • 79959974118 scopus 로고    scopus 로고
    • ATG7 contributes to plant basal immunity toward fungal pathogens
    • Lenz H.D., et al. ATG7 contributes to plant basal immunity toward fungal pathogens. Plant Signal. Behav. 2011, 6:1040-1042.
    • (2011) Plant Signal. Behav. , vol.6 , pp. 1040-1042
    • Lenz, H.D.1
  • 83
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H., et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29:1792-1802.
    • (2010) EMBO J. , vol.29 , pp. 1792-1802
    • Weidberg, H.1
  • 84
    • 84865595452 scopus 로고    scopus 로고
    • Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic receptor NBR1 and p62/SQSTM1
    • Svenning S., et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic receptor NBR1 and p62/SQSTM1. Autophagy 2011, 7:1-18.
    • (2011) Autophagy , vol.7 , pp. 1-18
    • Svenning, S.1
  • 85
    • 84857758872 scopus 로고    scopus 로고
    • A new type of compartment, defined by plant-specific ATG8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation
    • Honig A., et al. A new type of compartment, defined by plant-specific ATG8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 2012, 24:288-303.
    • (2012) Plant Cell , vol.24 , pp. 288-303
    • Honig, A.1
  • 86
    • 33846378524 scopus 로고    scopus 로고
    • Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis
    • Xiong Y., et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007, 143:291-299.
    • (2007) Plant Physiol. , vol.143 , pp. 291-299
    • Xiong, Y.1
  • 87
    • 0029798980 scopus 로고    scopus 로고
    • Autophagy in tobacco suspension-cultured cells in response to sucrose starvation
    • Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 1996, 111:1233-1241.
    • (1996) Plant Physiol. , vol.111 , pp. 1233-1241
    • Moriyasu, Y.1    Ohsumi, Y.2
  • 88
    • 0031775092 scopus 로고    scopus 로고
    • Barley aleurone cells contain two types of vacuoles. Characterization of lytic organelles by use of fluorescent probes
    • Swanson S.J., et al. Barley aleurone cells contain two types of vacuoles. Characterization of lytic organelles by use of fluorescent probes. Plant Cell 1998, 10:685-698.
    • (1998) Plant Cell , vol.10 , pp. 685-698
    • Swanson, S.J.1
  • 89
    • 19444370899 scopus 로고    scopus 로고
    • Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein
    • Contento A.L., et al. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 2005, 42:598-608.
    • (2005) Plant J. , vol.42 , pp. 598-608
    • Contento, A.L.1
  • 90
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 91
    • 77950484269 scopus 로고    scopus 로고
    • Atg8-family interacting motif crucial for selective autophagy
    • Noda N.N., et al. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010, 584:1379-1385.
    • (2010) FEBS Lett. , vol.584 , pp. 1379-1385
    • Noda, N.N.1
  • 92
    • 57249083972 scopus 로고    scopus 로고
    • Structural basis of target recognition by Atg8/LC3 during selective autophagy
    • Noda N.N., et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 2008, 13:1211-1218.
    • (2008) Genes Cells , vol.13 , pp. 1211-1218
    • Noda, N.N.1
  • 93
    • 80052194357 scopus 로고    scopus 로고
    • Let's go bananas: revisiting the endocytic BAR code
    • Qualmann B., et al. Let's go bananas: revisiting the endocytic BAR code. EMBO J. 2011, 30:3501-3515.
    • (2011) EMBO J. , vol.30 , pp. 3501-3515
    • Qualmann, B.1
  • 94
    • 72149095496 scopus 로고    scopus 로고
    • SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination
    • Trempe J.F., et al. SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol. Cell 2009, 36:1034-1047.
    • (2009) Mol. Cell , vol.36 , pp. 1034-1047
    • Trempe, J.F.1
  • 95
    • 77953708505 scopus 로고    scopus 로고
    • FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors
    • Pankiv S., Johansen T. FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors. Autophagy 2010, 6:550-552.
    • (2010) Autophagy , vol.6 , pp. 550-552
    • Pankiv, S.1    Johansen, T.2
  • 96
    • 76149086512 scopus 로고    scopus 로고
    • FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
    • Pankiv S., et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 2010, 188:253-269.
    • (2010) J. Cell Biol. , vol.188 , pp. 253-269
    • Pankiv, S.1
  • 97
    • 77955081078 scopus 로고    scopus 로고
    • Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana
    • Wywial E., Singh S.M. Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol. 2010, 10:157.
    • (2010) BMC Plant Biol. , vol.10 , pp. 157
    • Wywial, E.1    Singh, S.M.2
  • 98
    • 67650264633 scopus 로고    scopus 로고
    • Atg32 is a mitochondrial protein that confers selectivity during mitophagy
    • Kanki T., et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 2009, 17:98-109.
    • (2009) Dev. Cell , vol.17 , pp. 98-109
    • Kanki, T.1
  • 99
    • 67650246357 scopus 로고    scopus 로고
    • Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
    • Okamoto K., et al. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 2009, 17:87-97.
    • (2009) Dev. Cell , vol.17 , pp. 87-97
    • Okamoto, K.1
  • 100
    • 47049100413 scopus 로고    scopus 로고
    • Essential role for Nix in autophagic maturation of erythroid cells
    • Sandoval H., et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008, 454:232-235.
    • (2008) Nature , vol.454 , pp. 232-235
    • Sandoval, H.1
  • 101
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 2009, 33:505-516.
    • (2009) Mol. Cell , vol.33 , pp. 505-516
    • Kirkin, V.1
  • 102
    • 65549142204 scopus 로고    scopus 로고
    • A role for ubiquitin in selective autophagy
    • Kirkin V., et al. A role for ubiquitin in selective autophagy. Mol. Cell 2009, 34:259-269.
    • (2009) Mol. Cell , vol.34 , pp. 259-269
    • Kirkin, V.1
  • 103
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282:24131-24145.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24131-24145
    • Pankiv, S.1
  • 104
    • 0034616943 scopus 로고    scopus 로고
    • Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain
    • Spence J., et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 2000, 102:67-76.
    • (2000) Cell , vol.102 , pp. 67-76
    • Spence, J.1
  • 105
    • 77955485244 scopus 로고    scopus 로고
    • Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes
    • Book A.J., et al. Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J. Biol. Chem. 2010, 285:25554-25569.
    • (2010) J. Biol. Chem. , vol.285 , pp. 25554-25569
    • Book, A.J.1
  • 106
    • 27944504351 scopus 로고    scopus 로고
    • P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death
    • Bjorkoy G., et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death. J. Cell Biol. 2005, 171:603-614.
    • (2005) J. Cell Biol. , vol.171 , pp. 603-614
    • Bjorkoy, G.1
  • 107
    • 52649121942 scopus 로고    scopus 로고
    • The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes
    • Shvets E., et al. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 2008, 121:2685-2695.
    • (2008) J. Cell Sci. , vol.121 , pp. 2685-2695
    • Shvets, E.1
  • 108
    • 67650517556 scopus 로고    scopus 로고
    • NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
    • Lamark T., et al. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 2009, 8:1986-1990.
    • (2009) Cell Cycle , vol.8 , pp. 1986-1990
    • Lamark, T.1
  • 109
    • 0141445968 scopus 로고    scopus 로고
    • Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins
    • Lamark T., et al. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J. Biol. Chem. 2003, 278:34568-34581.
    • (2003) J. Biol. Chem. , vol.278 , pp. 34568-34581
    • Lamark, T.1
  • 110
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S., et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 119-131
    • Geisler, S.1
  • 111
    • 77955023765 scopus 로고    scopus 로고
    • Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy
    • Rothenberg C., et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum. Mol. Genet. 2010, 19:3219-3232.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 3219-3232
    • Rothenberg, C.1
  • 112
    • 77950363988 scopus 로고    scopus 로고
    • The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis
    • Farmer L.M., et al. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell 2010, 22:124-142.
    • (2010) Plant Cell , vol.22 , pp. 124-142
    • Farmer, L.M.1
  • 113
    • 80052631811 scopus 로고    scopus 로고
    • The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h
    • Devarenne T.P. The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h. Biochem. Biophys. Res. Commun. 2011, 412:699-703.
    • (2011) Biochem. Biophys. Res. Commun. , vol.412 , pp. 699-703
    • Devarenne, T.P.1
  • 114
    • 70349687405 scopus 로고    scopus 로고
    • Discovery of Atg5/Atg7-independent alternative macroautophagy
    • Nishida Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009, 461:654-658.
    • (2009) Nature , vol.461 , pp. 654-658
    • Nishida, Y.1
  • 115
    • 84255169600 scopus 로고    scopus 로고
    • Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling
    • Sandilands E., et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol. 2012, 14:51-60.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 51-60
    • Sandilands, E.1
  • 116
    • 77955172368 scopus 로고    scopus 로고
    • Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation
    • Gao C., et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol. 2010, 12:781-790.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 781-790
    • Gao, C.1
  • 117
    • 58249085224 scopus 로고    scopus 로고
    • SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans
    • Zhang Y., et al. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 2009, 136:308-321.
    • (2009) Cell , vol.136 , pp. 308-321
    • Zhang, Y.1
  • 118
    • 77956499358 scopus 로고    scopus 로고
    • Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway
    • Yamaguchi M., et al. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 2010, 285:29599-29607.
    • (2010) J. Biol. Chem. , vol.285 , pp. 29599-29607
    • Yamaguchi, M.1
  • 119
    • 65649136884 scopus 로고    scopus 로고
    • The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy
    • Satoo K., et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009, 28:1341-1350.
    • (2009) EMBO J. , vol.28 , pp. 1341-1350
    • Satoo, K.1
  • 120
    • 37249005256 scopus 로고    scopus 로고
    • Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein
    • Mohrluder J., et al. Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein. Biochemistry 2007, 46:14537-14543.
    • (2007) Biochemistry , vol.46 , pp. 14537-14543
    • Mohrluder, J.1
  • 121
    • 35448936487 scopus 로고    scopus 로고
    • Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library
    • Mohrluder J., et al. Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J. 2007, 274:5543-5555.
    • (2007) FEBS J. , vol.274 , pp. 5543-5555
    • Mohrluder, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.