메뉴 건너뛰기




Volumn 13, Issue 2, 2013, Pages 1110-1120

New skeleton-based approaches for Bayesian structure learning of Bayesian networks

Author keywords

Bayesian networks; Bayesian structure learning; Markov chain Monte Carlo; Probabilistic graphical models; Stochastic search

Indexed keywords

CHAINS; DIRECTED GRAPHS; GRAPH THEORY; GRAPHIC METHODS; MARKOV PROCESSES; MONTE CARLO METHODS; MUSCULOSKELETAL SYSTEM; PROBABILITY DISTRIBUTIONS; SPEECH RECOGNITION; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84879604709     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.09.029     Document Type: Article
Times cited : (17)

References (31)
  • 3
    • 34249761849 scopus 로고
    • Learning, Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, D. Chickering, Learning, Bayesian networks: the combination of knowledge and statistical data, Machine Learning 20 (3) (1995) 197-243.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Machine Learning 9 (1992) 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 10
    • 1642397083 scopus 로고    scopus 로고
    • Algorithms for large scale Markov blanket discovery
    • I. Russell, S.M. Haller (Eds.), AAAI Press
    • I. Tsamardinos, C.F. Aliferis, A.R. Statnikov, Algorithms for large scale Markov blanket discovery, in: I. Russell, S.M. Haller (Eds.), FLAIRS Conference, AAAI Press, 2003, pp. 376-381.
    • (2003) FLAIRS Conference , pp. 376-381
    • Tsamardinos, I.1    Aliferis, C.F.2    Statnikov, A.R.3
  • 11
    • 9444248216 scopus 로고    scopus 로고
    • A skeleton-based approach to learning Bayesian networks from data
    • N. Lavrac, D. Gamberger, H. Blockeel, L. Todor-ovski (Eds.), Springer
    • S. van Dijk, L.C. van derGaag, D. Thierens, A skeleton-based approach to learning Bayesian networks from data, in: N. Lavrac, D. Gamberger, H. Blockeel, L. Todor-ovski (Eds.), PKDD, Lecture Notes in Computer Science, vol. 2838, Springer, 2003, pp. 132-143.
    • (2003) PKDD, Lecture Notes in Computer Science , vol.2838 , pp. 132-143
    • Van Dijk, S.1    Gaag Der Van, L.C.2    Thierens, D.3
  • 12
    • 33746035971 scopus 로고    scopus 로고
    • Constantin, the max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, A. Brown, Constantin, The max-min hill-climbing Bayesian network structure learning algorithm, Machine Learning 65 (1) (2006) 31-78.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, A.2
  • 13
    • 78651369196 scopus 로고    scopus 로고
    • Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood
    • J.A. Gámez, J.L. Mateo, J.M. Puerta, Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood, Data Mining and Knowledge Discovery 22 (2011) 106-148.
    • Data Mining and Knowledge Discovery , vol.22 , Issue.2011 , pp. 106-148
    • Gámez, J.A.1    Mateo, J.L.2    Puerta, J.M.3
  • 14
    • 41549133874 scopus 로고    scopus 로고
    • A recursive method for structural learning of directed acyclic graphs
    • X. Xie, Z. Geng, A recursive method for structural learning of directed acyclic graphs, Journal of Machine Learning Research 9 (2008) 459-483.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 459-483
    • Xie, X.1    Geng, Z.2
  • 17
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I. Algorithms and empirical evaluation
    • C.F. Aliferis, A.R. Statnikov, I. Tsamardinos, S. Mani, X.D. Koutsoukos, Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I. Algorithms and empirical evaluation, Journal of Machine Learning Research 11 (2010) 171-234.
    • Journal of Machine Learning Research , vol.11 , Issue.2010 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.R.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 18
    • 0037262841 scopus 로고    scopus 로고
    • Being, Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman, D. Koller, Being, Bayesian about Bayesian network structure: a Bayesian approach to structure discovery in Bayesian networks, Machine Learning 50 (1-2) (2003) 95-125.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 21
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure mcmc sampler for Bayesian networks by introducing a new edge reversal move
    • M. Grzegorczyk, D. Husmeier, Improving the structure mcmc sampler for Bayesian networks by introducing a new edge reversal move, Machine Learning 71 (2-3)(2008)265-305.
    • (2008) Machine Learning , vol.71 , Issue.2-3 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 25
    • 20144364427 scopus 로고    scopus 로고
    • Experiments in stochastic computation for high dimensional graphical models
    • B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter, M. West, Experiments in stochastic computation for high dimensional graphical models, Statistical Science 20 (2004)388-400.
    • (2004) Statistical Science , vol.20 , pp. 388-400
    • Jones, B.1    Carvalho, C.2    Dobra, A.3    Hans, C.4    Carter, C.5    West, M.6
  • 26
    • 33644910161 scopus 로고    scopus 로고
    • An exploration of aspects of Bayesian multiple testing
    • J.G. Scott, J.O. Berger, An exploration of aspects of Bayesian multiple testing, Journal of Statistical Planning and Inference 136 (7) (2006) 2144-2162, http://dx.doi.org/10.1016/jjspi.2005.08.031.
    • (2006) Journal of Statistical Planning and Inference , vol.136 , Issue.7 , pp. 2144-2162
    • Scott, J.G.1    Berger, J.O.2
  • 27
    • 69249182056 scopus 로고    scopus 로고
    • Objective Bayesian model selection in Gaussian graphical models
    • CM. Carvalho, J.G. Scott, Objective Bayesian model selection in Gaussian graphical models, Biometrika96 (3) (2009) 497-512.
    • (2009) Biometrika , vol.96 , Issue.3 , pp. 497-512
    • Carvalho, C.M.1    Scott, J.G.2
  • 29
    • 84866503799 scopus 로고    scopus 로고
    • A Bayesian stochastic search method for discovering Markov boundaries
    • A. Masegosa, S. Moral, A Bayesian stochastic search method for discovering Markov boundaries, Knowledge-Based Systems 35 (2012) 211-223.
    • Knowledge-Based Systems , vol.35 , Issue.2012 , pp. 211-223
    • Masegosa, A.1    Moral, S.2
  • 30
    • 26944470217 scopus 로고    scopus 로고
    • Time and sample efficient discovery of Markov blankets and direct causal relations
    • L. Getoor, T.E. Senator, P. Domingos, C. Faloutsos (Eds.)
    • I. Tsamardinos, C.F. Aliferis, A.R. Statnikov, Time and sample efficient discovery of Markov blankets and direct causal relations, in: L. Getoor, T.E. Senator, P. Domingos, C. Faloutsos (Eds.), KDD, ACM, 2003, pp. 673-678.
    • (2003) KDD, ACM , pp. 673-678
    • Tsamardinos, I.1    Aliferis, C.F.2    Statnikov, A.R.3
  • 31
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto, K. Sood, Exact Bayesian structure discovery in Bayesian networks, Journal of Machine Learning Research 5 (2004) 549-573.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.