메뉴 건너뛰기




Volumn 35, Issue , 2012, Pages 211-223

A Bayesian stochastic search method for discovering Markov boundaries

Author keywords

Bayesian methods; Feature selection; Markov boundaries; Probabilistic graphical models; Stochastic search

Indexed keywords

BAYESIAN APPROACHES; BAYESIAN METHODS; DATA SETS; EXPERIMENTAL EVALUATION; EXPERT KNOWLEDGE; HUMAN INTERVENTION; LEARNING PROCESS; MARKOV BOUNDARY; OBSERVATIONAL DATA; POSTERIORI; PROBABILISTIC GRAPHICAL MODELS; STATE-OF-THE-ART APPROACH; STATISTICAL INDEPENDENCE; STOCHASTIC SEARCH; STOCHASTIC SEARCH METHODS;

EID: 84866503799     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2012.04.028     Document Type: Article
Times cited : (13)

References (30)
  • 4
    • 84855918144 scopus 로고    scopus 로고
    • A fuzzy intelligent approach to the classification problem in gene expression data analysis
    • M. Khashei, A.Z. Hamadani, and M. Bijari A fuzzy intelligent approach to the classification problem in gene expression data analysis Knowledge-Based Systems 27 0 2012 465 474
    • (2012) Knowledge-Based Systems , vol.27 , Issue.0 , pp. 465-474
    • Khashei, M.1    Hamadani, A.Z.2    Bijari, M.3
  • 5
    • 77955415855 scopus 로고    scopus 로고
    • A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm
    • S.S. Kannan, and N. Ramaraj A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm Knowledge-Based Systems 23 6 2010 580 585
    • (2010) Knowledge-Based Systems , vol.23 , Issue.6 , pp. 580-585
    • Kannan, S.S.1    Ramaraj, N.2
  • 7
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
    • C.F. Aliferis, A.R. Statnikov, I. Tsamardinos, S. Mani, and X.D. Koutsoukos Local causal and Markov blanket induction for causal discovery and feature selection for classification part i: algorithms and empirical evaluation Journal of Machine Learning Research 11 2010 171 234
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.R.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 8
    • 14344265835 scopus 로고    scopus 로고
    • HITON: A novel Markov Blanket algorithm for optimal variable selection
    • C.F. Aliferis, I. Tsamardinos, A. Statnikov, HITON: a novel Markov Blanket algorithm for optimal variable selection, in: AMIA Symposium, 2003, pp. 21-25.
    • (2003) AMIA Symposium , pp. 21-25
    • Aliferis, C.F.1    Tsamardinos, I.2    Statnikov, A.3
  • 9
    • 26944470217 scopus 로고    scopus 로고
    • Time and sample efficient discovery of Markov blankets and direct causal relations
    • L. Getoor, T.E. Senator, P. Domingos, C. Faloutsos, ACM
    • I. Tsamardinos, C.F. Aliferis, and A.R. Statnikov Time and sample efficient discovery of Markov blankets and direct causal relations L. Getoor, T.E. Senator, P. Domingos, C. Faloutsos, KDD 2003 ACM 673 678
    • (2003) KDD , pp. 673-678
    • Tsamardinos, I.1    Aliferis, C.F.2    Statnikov, A.R.3
  • 10
    • 77955493761 scopus 로고    scopus 로고
    • Analysis and computational dissection of molecular signature multiplicity
    • A. Statnikov, and C.F. Aliferis Analysis and Computational Dissection of Molecular Signature Multiplicity PLoS Comput Biol 6 5 2010
    • (2010) PLoS Comput Biol , vol.6 , Issue.5
    • Statnikov, A.1    Aliferis, C.F.2
  • 11
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • DOI 10.1016/j.ijar.2006.06.008, PII S0888613X06000600, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
    • J.M. Peña, R. Nilsson, J. Björkegren, and J. Tegnér Towards scalable and data efficient learning of Markov boundaries International Journal of Approximate Reasoning 45 2 2007 211 232 (Pubitemid 46880195)
    • (2007) International Journal of Approximate Reasoning , vol.45 , Issue.2 , pp. 211-232
    • Pena, J.M.1    Nilsson, R.2    Bjorkegren, J.3    Tegner, J.4
  • 12
    • 1642397083 scopus 로고    scopus 로고
    • Algorithms for large scale Markov blanket discovery
    • I. Russell, S.M. Haller, AAAI Press
    • I. Tsamardinos, C.F. Aliferis, and A.R. Statnikov Algorithms for large scale Markov blanket discovery I. Russell, S.M. Haller, FLAIRS Conference 2003 AAAI Press 376 381
    • (2003) FLAIRS Conference , pp. 376-381
    • Tsamardinos, I.1    Aliferis, C.F.2    Statnikov, A.R.3
  • 13
    • 84866514127 scopus 로고    scopus 로고
    • Causal discovery using a Bayesian local causal discovery algorithm
    • S. Mani, and G.F. Cooper Causal discovery using a Bayesian local causal discovery algorithm Studies in Health Technology and Informatics 107 Pt 1 2004 731 735
    • (2004) Studies in Health Technology and Informatics , vol.107 , Issue.PART 1 , pp. 731-735
    • Mani, S.1    Cooper, G.F.2
  • 14
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how and which
    • R.B.O. Hara, and M.J. Sillanp A review of Bayesian variable selection methods: what, how and which Bayesian Analysis 4 1 2009 85 118
    • (2009) Bayesian Analysis , vol.4 , Issue.1 , pp. 85-118
    • Hara, R.B.O.1    Sillanp, M.J.2
  • 16
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification part ii: Analysis and extensions
    • C.F. Aliferis, A.R. Statnikov, I. Tsamardinos, S. Mani, and X.D. Koutsoukos Local causal and Markov blanket induction for causal discovery and feature selection for classification part ii: analysis and extensions Journal of Machine Learning Research 11 2010 235 284
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.R.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 17
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering Learning Bayesian networks: the combination of knowledge and statistical data Machine Learning 20 3 1995 197 243
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 18
    • 33644910161 scopus 로고    scopus 로고
    • An exploration of aspects of Bayesian multiple testing
    • DOI 10.1016/j.jspi.2005.08.031, PII S0378375805002156
    • J.G. Scott, and J.O. Berger An exploration of aspects of Bayesian multiple testing Journal of Statistical Planning and Inference 136 7 2006 2144 2162 10.1016/j.jspi.2005.08.031 (Pubitemid 43380514)
    • (2006) Journal of Statistical Planning and Inference , vol.136 , Issue.7 SPEC. ISS. , pp. 2144-2162
    • Scott, J.G.1    Berger, J.O.2
  • 22
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan Induction of decision trees Machine Learning 1 1 1986 81 106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 70349888140 scopus 로고    scopus 로고
    • Learning the Bayesian network structure: Dirichlet prior vs data
    • D.A. McAllester, P. Myllymäki, AUAI Press
    • H. Steck Learning the Bayesian network structure: dirichlet prior vs data D.A. McAllester, P. Myllymäki, UAI 2008 AUAI Press 511 518
    • (2008) UAI , pp. 511-518
    • Steck, H.1
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 27
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 28
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • DOI 10.1007/s10994-005-4258-6
    • G.I. Webb, J.R. Boughton, and Z. Wang Not so naive bayes: aggregating one-dependence estimators Machine Learning 58 1 2005 5 24 (Pubitemid 40356736)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 29
    • 79959718850 scopus 로고    scopus 로고
    • A partial correlation-based Bayesian network structure learning algorithm under linear sem
    • J. Yang, L. Li, and A. Wang A partial correlation-based Bayesian network structure learning algorithm under linear sem Knowledge-Based Systems 24 7 2011 963 976
    • (2011) Knowledge-Based Systems , vol.24 , Issue.7 , pp. 963-976
    • Yang, J.1    Li, L.2    Wang, A.3
  • 30


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.