메뉴 건너뛰기




Volumn 490, Issue , 2013, Pages 41-55

A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

Author keywords

Artificial intelligence; Black box model; Fuzzy clustering; Spatiotemporal modeling; The Eel River watershed

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; BLACK-BOX MODEL; C-MEANS CLUSTERING ALGORITHM; CROSS-VALIDATION TECHNIQUE; RAINFALL-RUNOFF MODELING; RIVER WATERSHEDS; SPATIOTEMPORAL MODELING; UNCERTAINTY AND COMPLEXITY;

EID: 84876822959     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.03.024     Document Type: Article
Times cited : (91)

References (56)
  • 1
    • 0033827239 scopus 로고    scopus 로고
    • Comparison of ANNs and empirical approaches for predicting watershed runoff
    • Anmala J., Zhang B., Govindaraju R. Comparison of ANNs and empirical approaches for predicting watershed runoff. J. Water Resour. Plann. Manage. 2000, 126:156-166.
    • (2000) J. Water Resour. Plann. Manage. , vol.126 , pp. 156-166
    • Anmala, J.1    Zhang, B.2    Govindaraju, R.3
  • 2
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool
    • Aqil M., Kita I., Yano A., Nishiyama S. Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool. J. Environ. Manage. 2007, 85:215-223.
    • (2007) J. Environ. Manage. , vol.85 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: Preliminary concepts
    • ASCE Task Committee on the application of ANNs in hydrology
    • ASCE Task Committee on the application of ANNs in hydrology Artificial neural networks in hydrology, I: Preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II: Hydrologic applications
    • ASCE Task Committee on the application of ANNs in hydrology
    • ASCE Task Committee on the application of ANNs in hydrology Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 7
    • 0345257361 scopus 로고    scopus 로고
    • Short-term water level prediction using neural networks and neuro-fuzzy approach
    • Bazartseren B., Hidebrandt G., Holz K.P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputers 2003, 55(3):439-450.
    • (2003) Neurocomputers , vol.55 , Issue.3 , pp. 439-450
    • Bazartseren, B.1    Hidebrandt, G.2    Holz, K.P.3
  • 8
    • 0018441920 scopus 로고
    • A physically based, variable contributing area model of basin hydrology
    • Beven K.J., Kirkby M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 1979, 24(1-3):43-69.
    • (1979) Hydrol. Sci. J. , vol.24 , Issue.1-3 , pp. 43-69
    • Beven, K.J.1    Kirkby, M.J.2
  • 10
    • 0021583718 scopus 로고
    • FCM: the fuzzy C-mean clustering algorithm
    • Bezdek J.C., Ehrlich R., Full W. FCM: the fuzzy C-mean clustering algorithm. Comput. Geosci. 1984, 10(2-3):191-203.
    • (1984) Comput. Geosci. , vol.10 , Issue.2-3 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 12
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth. 2006, 31(18):1164-1171.
    • (2006) Phys. Chem. Earth. , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 13
    • 84858142021 scopus 로고    scopus 로고
    • Validation of an ANN flow prediction model using a multi-station cluster analysis
    • Demirel M.C., Booij M.J., Kahya E. Validation of an ANN flow prediction model using a multi-station cluster analysis. J. Hydrol. Eng. 2011, 17(2):262-271.
    • (2011) J. Hydrol. Eng. , vol.17 , Issue.2 , pp. 262-271
    • Demirel, M.C.1    Booij, M.J.2    Kahya, E.3
  • 14
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando D.A., Jayawardena A.W. Runoff forecasting using RBF networks with OLS algorithm. J. Hydrol. Eng. 1998, 3:203-209.
    • (1998) J. Hydrol. Eng. , vol.3 , pp. 203-209
    • Fernando, D.A.1    Jayawardena, A.W.2
  • 15
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19(1):1-67.
    • (1991) Ann. Stat. , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 16
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using adaptive neuro-fuzzy systems
    • Gautam D.K., Holz K.P. Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J. Hydroinf. 2001, 3:3-10.
    • (2001) J. Hydroinf. , vol.3 , pp. 3-10
    • Gautam, D.K.1    Holz, K.P.2
  • 17
    • 0035734427 scopus 로고    scopus 로고
    • Real-time forecasting of water levels using adaptive neuro-fuzzy systems
    • Gautam D.K., Holz K.P., Meyer Z. Real-time forecasting of water levels using adaptive neuro-fuzzy systems. Hydro-Eng. Environ. Mech. 2001, 48(4):3-21.
    • (2001) Hydro-Eng. Environ. Mech. , vol.48 , Issue.4 , pp. 3-21
    • Gautam, D.K.1    Holz, K.P.2    Meyer, Z.3
  • 18
    • 84876833049 scopus 로고    scopus 로고
    • Geocommunity, The Premier Online Resource for GIS and Geospatial Data.
    • Geocommunity, 2008. The Premier Online Resource for GIS and Geospatial Data. <>. http://data.geocomm.com.
    • (2008)
  • 19
    • 12544258737 scopus 로고    scopus 로고
    • Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy C-means clustering
    • Guler C., Thyne G.D. Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy C-means clustering. Water Resour. Res. 2004, 40:W12503-W12511.
    • (2004) Water Resour. Res. , vol.40
    • Guler, C.1    Thyne, G.D.2
  • 20
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31:2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 21
    • 33748316537 scopus 로고    scopus 로고
    • Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems
    • Jacquin A.P., Shamseldin A.Y. Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems. J. Hydrol. 2006, 329:154-173.
    • (2006) J. Hydrol. , vol.329 , pp. 154-173
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 22
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J.S.R., Sun C.T. Neuro-fuzzy modeling and control. Proc. IEEE. 1995, 83:378-406.
    • (1995) Proc. IEEE. , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 24
    • 84876850604 scopus 로고    scopus 로고
    • ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, ver. 1.5.1.
    • Jekabsons, G., 2011. ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, ver. 1.5.1. <>. http://www.cs.rtu.lv/jekabsons/.
    • (2011)
    • Jekabsons, G.1
  • 25
    • 77049088061 scopus 로고    scopus 로고
    • Rainfall-runoff models using adaptive neuro-fuzzy inference system (ANFIS) for an intermittent rive
    • Jothiprakash V., Magar R.B., Kalkutki S. Rainfall-runoff models using adaptive neuro-fuzzy inference system (ANFIS) for an intermittent rive. Int. J. Artif. Intell. 2009, 3:1-23.
    • (2009) Int. J. Artif. Intell. , vol.3 , pp. 1-23
    • Jothiprakash, V.1    Magar, R.B.2    Kalkutki, S.3
  • 26
    • 48549096154 scopus 로고    scopus 로고
    • Constructing neural network sediment estimation models using a data-driven algorithm
    • Kisi O. Constructing neural network sediment estimation models using a data-driven algorithm. Math. Comput. Simul. 2008, 79:94-103.
    • (2008) Math. Comput. Simul. , vol.79 , pp. 94-103
    • Kisi, O.1
  • 27
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35:233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 28
    • 26844569500 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models
    • Lin J.Y., Cheng C.T., Sun Y.G., Chau K. Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models. Lect. Notes Comput. Sci. 2005, 3612:1152-1161.
    • (2005) Lect. Notes Comput. Sci. , vol.3612 , pp. 1152-1161
    • Lin, J.Y.1    Cheng, C.T.2    Sun, Y.G.3    Chau, K.4
  • 29
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk K.C., Ball J.E., Sharma A. An application of artificial neural networks for rainfall forecasting. Math. Comput. Modell. 2001, 33:683-693.
    • (2001) Math. Comput. Modell. , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 30
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press, Berkeley CA, J.M. Le Cam, J. Neyman (Eds.)
    • MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley Symposium in Mathematical Statistics and Probability 1967, 281-297. University of California Press, Berkeley CA. J.M. Le Cam, J. Neyman (Eds.).
    • (1967) Proceedings of the 5th Berkeley Symposium in Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.1
  • 31
    • 33846455854 scopus 로고    scopus 로고
    • Spatially distributed watershed mapping and modeling: GIS based storm runoff response and hydrograph analysis: Part 2
    • Melesse A.M., Graham W.D., Jordan J.D. Spatially distributed watershed mapping and modeling: GIS based storm runoff response and hydrograph analysis: Part 2. J. Spatial Hydrol. 2003, 3(2):2-28.
    • (2003) J. Spatial Hydrol. , vol.3 , Issue.2 , pp. 2-28
    • Melesse, A.M.1    Graham, W.D.2    Jordan, J.D.3
  • 32
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • Mutlu E., Chaubey I., Hexmoor H., Bajwa S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol. Process. 2008, 22:5097-5106.
    • (2008) Hydrol. Process. , vol.22 , pp. 5097-5106
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 33
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: Part I. A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: Part I. A discussion of principles. J. Hydrol. 1970, 10:282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 34
    • 38349026537 scopus 로고    scopus 로고
    • Development of neuro-fuzzy models to account for temporal and spatial variations in a lumped rainfall-runoff model
    • Nasr A., Bruen M. Development of neuro-fuzzy models to account for temporal and spatial variations in a lumped rainfall-runoff model. J. Hydrol. 2008, 349:277-290.
    • (2008) J. Hydrol. , vol.349 , pp. 277-290
    • Nasr, A.1    Bruen, M.2
  • 35
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291:52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 36
    • 36148941807 scopus 로고    scopus 로고
    • Semi-distributed flood runoff model at the sub-continental scale for southwestern Iran
    • Nourani V., Mano A. Semi-distributed flood runoff model at the sub-continental scale for southwestern Iran. Hydrol. Process. 2007, 21:3173-3180.
    • (2007) Hydrol. Process. , vol.21 , pp. 3173-3180
    • Nourani, V.1    Mano, A.2
  • 37
    • 77952374286 scopus 로고    scopus 로고
    • Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes
    • Nourani V., Kalantari O. Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes. Environ. Eng. Sci. 2010, 27(5):411-422.
    • (2010) Environ. Eng. Sci. , vol.27 , Issue.5 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 38
    • 84876839144 scopus 로고    scopus 로고
    • Quantity and quality modeling of groundwater by conjugation of ANN and Co-kriging approaches
    • Nayak, P. (Ed.), Water Resources Management and Modeling, E-Publishing, InTech.
    • Nourani, V., Ejlali, R.G., 2012. Quantity and quality modeling of groundwater by conjugation of ANN and Co-kriging approaches. In: Nayak, P. (Ed.), Water Resources Management and Modeling, E-Publishing, InTech., pp. 287-310.
    • (2012) , pp. 287-310
    • Nourani, V.1    Ejlali, R.G.2
  • 39
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani V., Mogaddam A.A., Nadiri A.O. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 2008, 22:5054-5066.
    • (2008) Hydrol. Process. , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 40
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 2009, 23:2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 41
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22:466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 42
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi Ö., Komasi M. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402(1-2):41-59.
    • (2011) J. Hydrol. , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 43
    • 67649111107 scopus 로고    scopus 로고
    • Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
    • Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., Nourani V. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ. 2009, 407:4916-4927.
    • (2009) Sci. Total Environ. , vol.407 , pp. 4916-4927
    • Rajaee, T.1    Mirbagheri, S.A.2    Zounemat-Kermani, M.3    Nourani, V.4
  • 44
    • 31044442537 scopus 로고    scopus 로고
    • Regionalization of watersheds by fuzzy cluster analysis
    • Ramachandra Rao A., Srinivas V.V. Regionalization of watersheds by fuzzy cluster analysis. J. Hydrol. 2006, 318:57-79.
    • (2006) J. Hydrol. , vol.318 , pp. 57-79
    • Ramachandra Rao, A.1    Srinivas, V.V.2
  • 45
    • 0014810305 scopus 로고
    • Numerical methods for fuzzy clustering
    • Ruspini E. Numerical methods for fuzzy clustering. Inf. Sci. 1970, 2:319-350.
    • (1970) Inf. Sci. , vol.2 , pp. 319-350
    • Ruspini, E.1
  • 46
    • 79953789883 scopus 로고    scopus 로고
    • A fuzzy C-means approach for regionalization using a bivariate homogeneity and discordancy approach
    • Sadri S., Burn D.H. A fuzzy C-means approach for regionalization using a bivariate homogeneity and discordancy approach. J. Hydrol. 2011, 401(3-4):231-239.
    • (2011) J. Hydrol. , vol.401 , Issue.3-4 , pp. 231-239
    • Sadri, S.1    Burn, D.H.2
  • 47
    • 31744438288 scopus 로고    scopus 로고
    • Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed
    • Sarangi A., Madramootoo C.A., Enright P., Prasher S.O., Patel R.M. Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed. Curr. Sci. 2005, 89(12):2022-2033.
    • (2005) Curr. Sci. , vol.89 , Issue.12 , pp. 2022-2033
    • Sarangi, A.1    Madramootoo, C.A.2    Enright, P.3    Prasher, S.O.4    Patel, R.M.5
  • 48
    • 0029416249 scopus 로고
    • Neural-network models of rainfall-runoff process
    • Smith J., Eli R.B. Neural-network models of rainfall-runoff process. J. Water Resour. Plann. Manage. 1995, 121:499-508.
    • (1995) J. Water Resour. Plann. Manage. , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.B.2
  • 49
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic for simulating event-based rainfall-runoff
    • Tayfur G., Singh V.P. ANN and fuzzy logic for simulating event-based rainfall-runoff. J. Hydraul. Eng. 2006, 132(12):1321-1329.
    • (2006) J. Hydraul. Eng. , vol.132 , Issue.12 , pp. 1321-1329
    • Tayfur, G.1    Singh, V.P.2
  • 50
    • 84856372643 scopus 로고    scopus 로고
    • Decision tree-based classifier combined with neural-based predictor for water-stage forecasts in a river basin during typhoons: a case study in Taiwan
    • Tsai C.C., Lu M.C., Wei C.C. Decision tree-based classifier combined with neural-based predictor for water-stage forecasts in a river basin during typhoons: a case study in Taiwan. Environ. Eng. Sci. 2012, 29(2):108-116.
    • (2012) Environ. Eng. Sci. , vol.29 , Issue.2 , pp. 108-116
    • Tsai, C.C.1    Lu, M.C.2    Wei, C.C.3
  • 51
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural network. J. Hydrol. Eng. 1999, 4:232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 53
    • 84876873750 scopus 로고    scopus 로고
    • WebGis, Geographic information systems resource.
    • WebGis, 2008. Geographic information systems resource. <>. http://www.webgis.com.
    • (2008)
  • 54
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly stream flow using data driven models coupled with data preprocessing techniques
    • Wu C.L., Chau K.W., Li Y.S. Predicting monthly stream flow using data driven models coupled with data preprocessing techniques. Water Resour. Res. 2009, 45:W08432.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 55
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno system
    • Xiong L., Shamseldin A.Y., O'Connor K.M. A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno system. J. Hydrol. 2001, 245:196-217.
    • (2001) J. Hydrol. , vol.245 , pp. 196-217
    • Xiong, L.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 56
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang B., Govindaraju R.S. Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J. Hydrol. 2003, 273:18-34.
    • (2003) J. Hydrol. , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.