메뉴 건너뛰기




Volumn 132, Issue 12, 2006, Pages 1321-1330

ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER CIRCUITS; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS; RAIN; RUNOFF; WATER CONSERVATION; WATER MANAGEMENT; WATERSHEDS; ALGORITHMS; BACKPROPAGATION; COMPUTER SIMULATION; FEEDFORWARD NEURAL NETWORKS; FUZZY SETS;

EID: 33751081243     PISSN: 07339429     EISSN: 19437900     Source Type: Journal    
DOI: 10.1061/(ASCE)0733-9429(2006)132:12(1321)     Document Type: Article
Times cited : (122)

References (32)
  • 1
    • 11944267778 scopus 로고    scopus 로고
    • Evaluation of neural network streamflow forecasting on 47 watersheds
    • Anctil, F., and Rat, A. (2005). “Evaluation of neural network streamflow forecasting on 47 watersheds.” J. Hydrol. Eng., 10(1), 85–88.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.1 , pp. 85-88
    • Anctil, F.1    Rat, A.2
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee. (2000a). “Artificial neural networks in hydrology. I: Preliminary concepts.” J. Hydrol. Eng., 5(2), 115–123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee. (2000b). “Artificial neural networks in hydrology. II: Hydrologic applications.” J. Hydrol. Eng., 5(2), 124–137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 15444365276 scopus 로고    scopus 로고
    • Fuzzy exemplar-based inference system for flood forecasting
    • Chang, L. C., Chang, F. J., and Tsai, Y. H. (2005). “Fuzzy exemplar-based inference system for flood forecasting.” Water Resour. Res., 41.
    • (2005) Water Resour. Res. , vol.41
    • Chang, L.C.1    Chang, F.J.2    Tsai, Y.H.3
  • 6
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, W. C., and Wilby, R. (1998). “An artificial neural network approach to rainfall-runoff modeling.” Hydrol. Sci. J., 43(1), 47–66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 7
    • 0027038418 scopus 로고
    • A simplified model for two dimensional overland flows
    • Govindaraju, R. S., Kavvas, M. L., and Tayfur, G. (1992). “A simplified model for two dimensional overland flows.” Adv. Water Resour., 15, 133–141.
    • (1992) Adv. Water Resour. , vol.15 , pp. 133-141
    • Govindaraju, R.S.1    Kavvas, M.L.2    Tayfur, G.3
  • 8
    • 0036715542 scopus 로고    scopus 로고
    • Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers
    • Hong, Y. S., Rosen, M. R., and Reeves, R. R. (2002). “Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers.” J. Hydrol. Eng., 7(5), 380–391.
    • (2002) J. Hydrol. Eng. , vol.7 , Issue.5 , pp. 380-391
    • Hong, Y.S.1    Rosen, M.R.2    Reeves, R.R.3
  • 9
    • 0004105094 scopus 로고    scopus 로고
    • Design of fuzzy controllers
    • Dept. of Automation, Technical Univ. of Denmark, Denmark
    • Jantzen, J. (1999). “Design of fuzzy controllers.” Technical Rep. No. 98-E864, Dept. of Automation, Technical Univ. of Denmark, Denmark.
    • (1999) Technical Rep. No. 98-E864
    • Jantzen, J.1
  • 10
    • 85042249188 scopus 로고
    • Mechanics of soil erosion from overland flow generated by simulated rainfall
    • Colorado State Univ., Fort Collins, Colo., Paper 63
    • Kilinc, M., and Richardson, E. V. (1973). “Mechanics of soil erosion from overland flow generated by simulated rainfall.” Hydrology papers, Colorado State Univ., Fort Collins, Colo., Paper 63.
    • (1973) Hydrology papers
    • Kilinc, M.1    Richardson, E.V.2
  • 11
    • 7244247371 scopus 로고    scopus 로고
    • Treatment of precipitation uncertainty in rainfall-runoff modeling: A fuzzy set approach
    • Maskey, S., Guinot, V., and Price, R. K. (2004). “Treatment of precipitation uncertainty in rainfall-runoff modeling: A fuzzy set approach.” Adv. Water Resour., 27(9), 889–898.
    • (2004) Adv. Water Resour. , vol.27 , Issue.9 , pp. 889-898
    • Maskey, S.1    Guinot, V.2    Price, R.K.3
  • 13
    • 1642578865 scopus 로고    scopus 로고
    • Neural networks for rainfall forecasting by atmospheric downscaling
    • Olsson, J., et al. (2004). “Neural networks for rainfall forecasting by atmospheric downscaling.” J. Hydrol. Eng., 9,1 1–12.
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.1 , pp. 1-12
    • Olsson, J.1
  • 14
    • 0035889604 scopus 로고    scopus 로고
    • Fuzzy conceptual rainfall-runoff models
    • Ozelkan, E. C., and Duckstein, L. (2001). “Fuzzy conceptual rainfall-runoff models.” J. Hydrol., 253(1–4), 41–68.
    • (2001) J. Hydrol. , vol.253 , Issue.1-4 , pp. 41-68
    • Ozelkan, E.C.1    Duckstein, L.2
  • 15
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modeling
    • Rajurkar, M. P., Kothyari, U. C., and Chaube, U. C. (2002). “Artificial neural networks for daily rainfall-runoff modeling.” Hydrol. Sci. J., 47(6), 865–877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 16
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the São Paulo region
    • Ramírez, M. C. V., Velho, H. F. C., and Ferreira, N. J. (2005). “Artificial neural network technique for rainfall forecasting applied to the São Paulo region.” J. Hydrol., 301(1–4), 146–162.
    • (2005) J. Hydrol. , vol.301 , Issue.1-4 , pp. 146-162
    • Ramírez, M.C.V.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 17
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See, L., and Openshaw, S. (2000). “A hybrid multi-model approach to river level forecasting.” Hydrol. Sci. J., 45(4), 523–536.
    • (2000) Hydrol. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 18
    • 0345404342 scopus 로고    scopus 로고
    • Fuzzy algorithm for estimation of solar irradiation from sunshine duration
    • Sen, Z. (1998). “Fuzzy algorithm for estimation of solar irradiation from sunshine duration.” Sol. Eng., 63(1), 39–49.
    • (1998) Sol. Eng. , vol.63 , Issue.1 , pp. 39-49
    • Sen, Z.1
  • 19
    • 33751120272 scopus 로고    scopus 로고
    • Fuzzy modelling in engineering
    • Civil Engineering Faculty, Istanbul Technical Univ., Istanbul, Turkey in Turkish
    • Sen, Z. (1999). “Fuzzy modelling in engineering.” Class notes, Civil Engineering Faculty, Istanbul Technical Univ., Istanbul, Turkey (in Turkish).
    • (1999) Class notes
    • Sen, Z.1
  • 20
    • 27644582518 scopus 로고    scopus 로고
    • MSc thesis, Dept. of Meteorological Engineering, Istanbul Technical Univ., Istanbul, Turkey in Turkish
    • Somez, I. (1998). “Meteorological applications of artificial neural networks.” MSc thesis, Dept. of Meteorological Engineering, Istanbul Technical Univ., Istanbul, Turkey (in Turkish).
    • (1998) Meteorological applications of artificial neural networks
    • Somez, I.1
  • 21
    • 0036566519 scopus 로고    scopus 로고
    • Applicability of sediment transport capacity models for non-steady state erosion from steep slopes
    • Tayfur, G. (2002a). “Applicability of sediment transport capacity models for non-steady state erosion from steep slopes.” J. Hydrol. Eng., 7(3), 252–259.
    • (2002) J. Hydrol. Eng. , vol.7 , Issue.3 , pp. 252-259
    • Tayfur, G.1
  • 22
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. (2002b). “Artificial neural networks for sheet sediment transport.” Hydrol. Sci. J., 47(6), 879–892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 23
    • 0027333989 scopus 로고
    • Applicability of St. Venant equations for two-dimensional overland flows over rough infiltrating surfaces
    • Tayfur, G., Kavvas, M. L., Govindaraju, G. S., and Storm, D. E. (1993). “Applicability of St. Venant equations for two-dimensional overland flows over rough infiltrating surfaces.” J. Hydraul. Eng., 119(1), 51–63.
    • (1993) J. Hydraul. Eng. , vol.119 , Issue.1 , pp. 51-63
    • Tayfur, G.1    Kavvas, M.L.2    Govindaraju, G.S.3    Storm, D.E.4
  • 24
    • 0242658864 scopus 로고    scopus 로고
    • Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces
    • Tayfur, G., Ozdemir, S., and Singh, V. P. (2003). “Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces.” Adv. Water Resour., 26, 1249–1256.
    • (2003) Adv. Water Resour. , vol.26 , pp. 1249-1256
    • Tayfur, G.1    Ozdemir, S.2    Singh, V.P.3
  • 25
    • 27644468479 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams by artificial neural network
    • Tayfur, G., and Singh, V. P. (2005). “Predicting longitudinal dispersion coefficient in natural streams by artificial neural network.” J. Hydraul. Eng., 131(11), 991–1000.
    • (2005) J. Hydraul. Eng. , vol.131 , Issue.11 , pp. 991-1000
    • Tayfur, G.1    Singh, V.P.2
  • 26
    • 20444494282 scopus 로고    scopus 로고
    • Case study: Finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland
    • Tayfur, G., Swiatek, D., Wita, A., and Singh, V. P. (2005). “Case study: Finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland.” J. Hydraul. Eng., 131(6), 431–440.
    • (2005) J. Hydraul. Eng. , vol.131 , Issue.6 , pp. 431-440
    • Tayfur, G.1    Swiatek, D.2    Wita, A.3    Singh, V.P.4
  • 28
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S., and Johnson, P. A. (1999). “Rainfall-runoff modeling using artificial neural networks.” J. Hydrol. Eng., 4(3), 232–239.
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 29
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar, S. A., and Markus, M. (2000). “Precipitation-runoff modeling using artificial neural networks and conceptual models.” J. Hydrol. Eng., 5(2), 156–161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, S.A.1    Markus, M.2
  • 30
    • 0001833292 scopus 로고
    • Unsteady free-surface flow problems
    • Colorado State Univ., Fort Collins, Colo
    • Woolhiser, D. A. (1974). “Unsteady free-surface flow problems.” Proc., Inst. on Unsteady Flow in Open Channels, Colorado State Univ., Fort Collins, Colo., 195–213.
    • (1974) Proc., Inst. on Unsteady Flow in Open Channels , pp. 195-213
    • Woolhiser, D.A.1
  • 31
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • Wu, J. S., Han, J., Annambhotla, S., and Bryant, S. (2005). “Artificial neural networks for forecasting watershed runoff and stream flows.” J. Hydrol. Eng., 10(3), 216–222.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.3 , pp. 216-222
    • Wu, J.S.1    Han, J.2    Annambhotla, S.3    Bryant, S.4
  • 32
    • 0034736047 scopus 로고    scopus 로고
    • Fuzzy multi-objective function for rainfall-runoff model calibration
    • Yu., P.-S., and Yang, T.-C. (2000). “Fuzzy multi-objective function for rainfall-runoff model calibration.” J. Hydrol., 238(1–2), 1–14.
    • (2000) J. Hydrol. , vol.238 , Issue.1-2 , pp. 1-14
    • Yu, P.-S.1    Yang, T.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.