메뉴 건너뛰기




Volumn 407, Issue 17, 2009, Pages 4916-4927

Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models

Author keywords

Artificial neural networks; Hysteresis; Multi linear regression; Neuro fuzzy; Sediment rating curve; Suspended sediment prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; MULTI LINEAR REGRESSION; NEURO-FUZZY; SEDIMENT RATING CURVE; SUSPENDED SEDIMENT PREDICTION;

EID: 67649111107     PISSN: 00489697     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.scitotenv.2009.05.016     Document Type: Article
Times cited : (212)

References (46)
  • 1
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield models for Vamsadhara river basin (India)
    • Agarwal A., Singh R., Mishra S., and Bhunya P. ANN-based sediment yield models for Vamsadhara river basin (India). Water SA 31 1 (2005) 95-100
    • (2005) Water SA , vol.31 , Issue.1 , pp. 95-100
    • Agarwal, A.1    Singh, R.2    Mishra, S.3    Bhunya, P.4
  • 2
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool
    • Agil M., Kita I., Yano A., and Nishiyama S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J Environ Manag 85 (2007) 215-223
    • (2007) J Environ Manag , vol.85 , pp. 215-223
    • Agil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data
    • Alp M., and Cigizoglu H.K. Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data. Environ Model Softw 22 (2007) 2-13
    • (2007) Environ Model Softw , vol.22 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 4
    • 33750474052 scopus 로고    scopus 로고
    • Treatment of multi-dimensional data to enhance neural network estimators in regression problems
    • Altun H., Bilgil A., and Fidan B.C. Treatment of multi-dimensional data to enhance neural network estimators in regression problems. Expert Syst Appl 32 2 (2007) 599-605
    • (2007) Expert Syst Appl , vol.32 , Issue.2 , pp. 599-605
    • Altun, H.1    Bilgil, A.2    Fidan, B.C.3
  • 6
    • 19944401912 scopus 로고    scopus 로고
    • Data-driven modelling in the context of sediment transport
    • Bhattacharya B., Price R., and Solomatine D. Data-driven modelling in the context of sediment transport. Phys Chem Earth 30 (2005) 297-302
    • (2005) Phys Chem Earth , vol.30 , pp. 297-302
    • Bhattacharya, B.1    Price, R.2    Solomatine, D.3
  • 8
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • Cigizoglu H.K., and Alp M. Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37 (2006) 63-68
    • (2006) Adv Eng Softw , vol.37 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 10
    • 0022554291 scopus 로고
    • River loads underestimated by rating curves
    • Ferguson R.I. River loads underestimated by rating curves. Water Resour Res 22 (1986) 74-76
    • (1986) Water Resour Res , vol.22 , pp. 74-76
    • Ferguson, R.I.1
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Netw 2 5 (1989) 359-366
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 54149097718 scopus 로고    scopus 로고
    • Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes
    • Horowitz A.J. Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Sci Total Environ 400 (2008) 315-343
    • (2008) Sci Total Environ , vol.400 , pp. 315-343
    • Horowitz, A.J.1
  • 14
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using Anns
    • Jain S.K. Development of integrated sediment rating curves using Anns. J Hydraul Eng 127 1 (2001) 30-37
    • (2001) J Hydraul Eng , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 15
    • 0029273384 scopus 로고
    • Neuro-fuzzy modelling and control
    • Jang J.-S.R., and Sun C.-T. Neuro-fuzzy modelling and control. Proc IEEE 83 (1995) 378-406
    • (1995) Proc IEEE , vol.83 , pp. 378-406
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 17
    • 36549037067 scopus 로고    scopus 로고
    • Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream
    • Kim B., Lee S.E., Song M.Y., Choi J.H., Ahn S.M., Lee K.S., et al. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream. Sci Total Environ 390 (2008) 262-274
    • (2008) Sci Total Environ , vol.390 , pp. 262-274
    • Kim, B.1    Lee, S.E.2    Song, M.Y.3    Choi, J.H.4    Ahn, S.M.5    Lee, K.S.6
  • 18
    • 33845872549 scopus 로고    scopus 로고
    • River suspended sediment modelling using a fuzzy logic approach
    • Kisi O., Karahan E., and Sen Z. River suspended sediment modelling using a fuzzy logic approach. Hydrol Process 20 20 (2006) 4351-4362
    • (2006) Hydrol Process , vol.20 , Issue.20 , pp. 4351-4362
    • Kisi, O.1    Karahan, E.2    Sen, Z.3
  • 20
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., and McCabe Jr. G.J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour Res 35 1 (1999) 233-241
    • (1999) Water Resour Res , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 21
    • 34547743385 scopus 로고    scopus 로고
    • Deriving stage-discharge-sediment concentration relationships using fuzzy logic
    • Lohani A.K., Goel N.K., and Bhatia K.K. Deriving stage-discharge-sediment concentration relationships using fuzzy logic. Hydrol Sci J 52 4 (2007) 793-807
    • (2007) Hydrol Sci J , vol.52 , Issue.4 , pp. 793-807
    • Lohani, A.K.1    Goel, N.K.2    Bhatia, K.K.3
  • 23
    • 0023702760 scopus 로고
    • Sediment characterization and transport in Colusa Basin Drain
    • Mirbagheri S.A., Tanji K.K., and Krone R.B. Sediment characterization and transport in Colusa Basin Drain. J Environ Eng 114 6 (1988) 1257-1273
    • (1988) J Environ Eng , vol.114 , Issue.6 , pp. 1257-1273
    • Mirbagheri, S.A.1    Tanji, K.K.2    Krone, R.B.3
  • 24
    • 0023768034 scopus 로고
    • Simulation of suspended sediment in Colusa Basin Drain
    • Mirbagheri S.A., Tanji K.K., and Krone R.B. Simulation of suspended sediment in Colusa Basin Drain. J Environ Eng 114 6 (1988) 1274-1293
    • (1988) J Environ Eng , vol.114 , Issue.6 , pp. 1274-1293
    • Mirbagheri, S.A.1    Tanji, K.K.2    Krone, R.B.3
  • 25
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of load concentration in rivers using artificial neural network model
    • Nagy H.M., Watanabe K., and Hirano M. Prediction of load concentration in rivers using artificial neural network model. J Hydraul Eng 128 6 (2002) 588-595
    • (2002) J Hydraul Eng , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 26
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - a discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models part I - a discussion of principles. J Hydrol 10 3 (1970) 282-290
    • (1970) J Hydrol , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 27
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani V., Mogaddam A.A., and Nadiri A.O. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process 22 (2008) 5054-5066
    • (2008) Hydrol Process , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 28
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., and Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22 (2009) 466-472
    • (2009) Eng Appl Artif Intell , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 29
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • in press, doi:10.1007/s11269-009-9414-5
    • Nourani, V., Komasi, M., Mano, A., in press. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Management, Published online, doi:10.1007/s11269-009-9414-5.
    • Water Resources Management, Published online
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 30
    • 34249288002 scopus 로고    scopus 로고
    • A neural-fuzzy approach to classify the ecological status in surface waters
    • Ocampo-Duque W., Schuhmacher M., and Domingo J.L. A neural-fuzzy approach to classify the ecological status in surface waters. Environ Pollut 148 (2007) 634-641
    • (2007) Environ Pollut , vol.148 , pp. 634-641
    • Ocampo-Duque, W.1    Schuhmacher, M.2    Domingo, J.L.3
  • 31
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi N., Singh R., and Reddy L. Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J Hydrol Eng 11 1 (2006) 71-79
    • (2006) J Hydrol Eng , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.1    Singh, R.2    Reddy, L.3
  • 32
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman H., and Sunilkumar N. Multivariate modelling of water resources time series using artificial neural networks. Hydrol Sci J 40 2 (1995) 145-163
    • (1995) Hydrol Sci J , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 33
    • 33745982644 scopus 로고    scopus 로고
    • Application of artificial neural networks to assess pesticide contamination in shallow groundwater
    • Sahoo G.B., Ray C., Mehnert E., and Keefer D.A. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci Total Environ 367 (2006) 234-251
    • (2006) Sci Total Environ , vol.367 , pp. 234-251
    • Sahoo, G.B.1    Ray, C.2    Mehnert, E.3    Keefer, D.A.4
  • 35
    • 33144465541 scopus 로고    scopus 로고
    • Pipe flow suspended sediment dynamics and their contribution to stream sediment budgets in small rainforest catchments, Sabah, Malaysia
    • Sayer A.M., Walsh R.P.D., and Bidin K. Pipe flow suspended sediment dynamics and their contribution to stream sediment budgets in small rainforest catchments, Sabah, Malaysia. For Ecol Manag 224 (2006) 119-130
    • (2006) For Ecol Manag , vol.224 , pp. 119-130
    • Sayer, A.M.1    Walsh, R.P.D.2    Bidin, K.3
  • 36
    • 33744816480 scopus 로고    scopus 로고
    • Artificial neural networks for the solution of the phase stability problem
    • Schmitz J.E., Zemp R.J., and Mendes M.J. Artificial neural networks for the solution of the phase stability problem. Fluid Phase Equilib 245 (2006) 83-87
    • (2006) Fluid Phase Equilib , vol.245 , pp. 83-87
    • Schmitz, J.E.1    Zemp, R.J.2    Mendes, M.J.3
  • 37
    • 0242658864 scopus 로고    scopus 로고
    • Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces
    • Tayfur G., Ozdemir S., and Singh V.P. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Adv Water Resour 26 (2003) 1249-1256
    • (2003) Adv Water Resour , vol.26 , pp. 1249-1256
    • Tayfur, G.1    Ozdemir, S.2    Singh, V.P.3
  • 38
    • 0000605266 scopus 로고
    • Definitive computations of sand discharge in rivers
    • Toffaleti F.B. Definitive computations of sand discharge in rivers. J Hydraul Div, ASCE 95 1 (1969) 1831-1842
    • (1969) J Hydraul Div, ASCE , vol.95 , Issue.1 , pp. 1831-1842
    • Toffaleti, F.B.1
  • 39
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall runoff modelling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall runoff modelling using artificial neural networks. J Hydrol Eng 4 3 (1999) 232-239
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 40
    • 60249092433 scopus 로고    scopus 로고
    • Forecasting of ozone episode days by cost-sensitive neural network methods
    • Tsai C.H., Chang L.C., and Chiang H.C. Forecasting of ozone episode days by cost-sensitive neural network methods. Sci Total Environ 407 (2009) 2124-2135
    • (2009) Sci Total Environ , vol.407 , pp. 2124-2135
    • Tsai, C.H.1    Chang, L.C.2    Chiang, H.C.3
  • 41
    • 0034874799 scopus 로고    scopus 로고
    • Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate
    • Verstraeten G., and Poesen J. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40 (2001) 123-144
    • (2001) Geomorphology , vol.40 , pp. 123-144
    • Verstraeten, G.1    Poesen, J.2
  • 42
    • 0024856196 scopus 로고
    • Sediment concentration versus water discharge during single hydrologic events in rivers
    • Williams G.P. Sediment concentration versus water discharge during single hydrologic events in rivers. J Hydrol 111 1-4 (1989) 89-106
    • (1989) J Hydrol , vol.111 , Issue.1-4 , pp. 89-106
    • Williams, G.P.1
  • 44
    • 33846274953 scopus 로고    scopus 로고
    • Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China
    • Zhu Y.M., Lu X.X., and Zhou Y. Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84 (2007) 111-125
    • (2007) Geomorphology , vol.84 , pp. 111-125
    • Zhu, Y.M.1    Lu, X.X.2    Zhou, Y.3
  • 45
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani M., and Teshnehlab M. Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl Soft Comput 8 (2008) 928-936
    • (2008) Appl Soft Comput , vol.8 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2
  • 46
    • 58549088485 scopus 로고    scopus 로고
    • Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system
    • Zounemat-Kermani M., Beheshti A.A., Ataie-Ashtiani B., and Sabbagh-Yazdi S.R. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl Soft Comput 9 (2009) 746-755
    • (2009) Appl Soft Comput , vol.9 , pp. 746-755
    • Zounemat-Kermani, M.1    Beheshti, A.A.2    Ataie-Ashtiani, B.3    Sabbagh-Yazdi, S.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.