-
1
-
-
0034702917
-
Runoff analysis in humid forest catchment with artificial neural network
-
Gautam, M. R., Watanabe, K. and Saegusa, H., Runoff analysis in humid forest catchment with artificial neural network. J. Hydrol., 2000, 235, 117-136.
-
(2000)
J. Hydrol.
, vol.235
, pp. 117-136
-
-
Gautam, M.R.1
Watanabe, K.2
Saegusa, H.3
-
2
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
Hsu, K. L., Gupta, H. V. and Sorooshian, S., Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 1995, 31, 2517-2530.
-
(1995)
Water Resour. Res.
, vol.31
, pp. 2517-2530
-
-
Hsu, K.L.1
Gupta, H.V.2
Sorooshian, S.3
-
3
-
-
0037197571
-
A data-driven algorithm for constructing artificial neural network rainfall-runoff models
-
Sudheer, K. P., Gosain, A. K. and Ramasastri, K. S., A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process., 2000, 16, 1325-1330.
-
(2000)
Hydrol. Process.
, vol.16
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
4
-
-
0027007868
-
Rainfall forecasting in space and time using a neural network
-
French, M. N., Krajewski, W. F. and Cuykendall, R. R., Rainfall forecasting in space and time using a neural network. J. Hydrol., 1992, 137, 1-31.
-
(1992)
J. Hydrol.
, vol.137
, pp. 1-31
-
-
French, M.N.1
Krajewski, W.F.2
Cuykendall, R.R.3
-
5
-
-
0034174280
-
Artificial neural networks in hydrology-I: Preliminary concepts
-
ASCE task committee on application of ANNS in hydrology
-
ASCE, Artificial neural networks in hydrology-I: preliminary concepts. J. Hydrol. Eng., ASCE task committee on application of ANNS in hydrology, 2000, 5, 115-123.
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 115-123
-
-
-
6
-
-
0034174396
-
Artificial neural networks in hydrology-II: Hydrologic applications
-
ASCE, Artificial neural networks in hydrology-II: hydrologic applications. J. Hydrol. Eng., 2000, 5, 124-137.
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 124-137
-
-
-
7
-
-
0001818563
-
Effective and efficient modeling for streamflow forecasting
-
(eds Govindaraju, R. S. and Rao, A. R.), Kluwer, Dordrecht
-
Gupta, H. V., Hsu, K. and Sorooshian, S., Effective and efficient modeling for streamflow forecasting. In Artificial Neural Networks in Hydrology (eds Govindaraju, R. S. and Rao, A. R.), Kluwer, Dordrecht, 2000, pp.7-22.
-
(2000)
Artificial Neural Networks in Hydrology
, pp. 7-22
-
-
Gupta, H.V.1
Hsu, K.2
Sorooshian, S.3
-
8
-
-
0031399333
-
Precipitation estimation from remotely sensed information using artificial neural network
-
Hsu, K., Gao, X. and Sorooshain, S., Precipitation estimation from remotely sensed information using artificial neural network. J. Appl. Meteorol., 1997, 36, 1176-1190.
-
(1997)
J. Appl. Meteorol.
, vol.36
, pp. 1176-1190
-
-
Hsu, K.1
Gao, X.2
Sorooshain, S.3
-
9
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
-
Maier, H. and Dandy, G. C., Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Software, 2000, 15, 101-124.
-
(2000)
Environ. Model. Software
, vol.15
, pp. 101-124
-
-
Maier, H.1
Dandy, G.C.2
-
10
-
-
0033167344
-
Rainfall runoff modeling using artificial neural networks
-
Tokar, A. S. and Johnson, P. A., Rainfall runoff modeling using artificial neural networks. ASCE J. Hydrol. Eng., 1999, 4, 232-239.
-
(1999)
ASCE J. Hydrol. Eng.
, vol.4
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
11
-
-
0037466126
-
Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
-
Zhang, B. and Govindaraju, R., Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J. Hydrol., 2003, 273, 18-34.
-
(2003)
J. Hydrol.
, vol.273
, pp. 18-34
-
-
Zhang, B.1
Govindaraju, R.2
-
12
-
-
0033535432
-
A non-linear rainfall-runoff model using an artificial neural network
-
Sajikumar, N. and Thandaveswara, B. S., A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol., 1999, 216, 32-55.
-
(1999)
J. Hydrol.
, vol.216
, pp. 32-55
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
13
-
-
0024880831
-
Multi-layer feed forward networks are universal approximators
-
Hornik, K., Stinchcombe, M. and White, M., Multi-layer feed forward networks are universal approximators. Neural Networks, 1989, 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, M.3
-
14
-
-
0029416249
-
Neural network models of rainfall-runoff process
-
Smith, J. and Eli, R.N., Neural network models of rainfall-runoff process. ASCE J. Water Resour. Plann. Manage., 1995, 121, 499-508.
-
(1995)
ASCE J. Water Resour. Plann. Manage.
, vol.121
, pp. 499-508
-
-
Smith, J.1
Eli, R.N.2
-
15
-
-
0033827239
-
Comparison of ANNs and empirical approaches for predicting watershed runoff
-
Anmala, J., Zhang, B. and Govindaraju, R., Comparison of ANNs and empirical approaches for predicting watershed runoff. ASCE J. Water Resour. Plann. Manage., 2000, 126, 156-166.
-
(2000)
ASCE J. Water Resour. Plann. Manage.
, vol.126
, pp. 156-166
-
-
Anmala, J.1
Zhang, B.2
Govindaraju, R.3
-
16
-
-
0036499322
-
Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural networks
-
Cannon, A. J. and Whitfield, P. H., Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural networks. J. Hydrol., 2002, 259, 136-151.
-
(2002)
J. Hydrol.
, vol.259
, pp. 136-151
-
-
Cannon, A.J.1
Whitfield, P.H.2
-
17
-
-
28844444529
-
Use of geomorphological parameters for sediment yield prediction from watersheds
-
Sarangi, A. and Bhattacharya, A. K., Use of geomorphological parameters for sediment yield prediction from watersheds. J. Soil Water Conserv., 2002, 44, 99-106.
-
(2002)
J. Soil Water Conserv.
, vol.44
, pp. 99-106
-
-
Sarangi, A.1
Bhattacharya, A.K.2
-
18
-
-
0036611003
-
Prediction of sediment load concentration in rivers using Artificial Neural Network Model
-
Nagy, H. M., Watanabe, K. and Hirano, M., Prediction of sediment load concentration in rivers using Artificial Neural Network Model. J. Hydraul. Eng., 2002, 128, 588-595.
-
(2002)
J. Hydraul. Eng.
, vol.128
, pp. 588-595
-
-
Nagy, H.M.1
Watanabe, K.2
Hirano, M.3
-
19
-
-
0042658013
-
Modeling flow and sediment transport in a river system using an artificial neural network
-
Yitian, L. and Gu, R. R., Modeling flow and sediment transport in a river system using an artificial neural network. Environ. Manage., 2003, 31, 122-134.
-
(2003)
Environ. Manage.
, vol.31
, pp. 122-134
-
-
Yitian, L.1
Gu, R.R.2
-
20
-
-
0036955683
-
Modelling the hydrology of an agricultural watershed in Quebec using SLURP
-
Romero, D., Madramootoo, C. A. and Enright, P., Modelling the hydrology of an agricultural watershed in Quebec using SLURP. Can. Biosyst. Eng., 2002, 44, 1.11-1.20.
-
(2002)
Can. Biosyst. Eng.
, vol.44
-
-
Romero, D.1
Madramootoo, C.A.2
Enright, P.3
-
21
-
-
0004170348
-
-
McGraw-Hill, NY
-
Chow, V. T., Maidment, D. R. and Mays, L. W., Applied Hydrology, McGraw-Hill, NY, 1988.
-
(1988)
Applied Hydrology
-
-
Chow, V.T.1
Maidment, D.R.2
Mays, L.W.3
-
22
-
-
31744444617
-
Development of ArcGIS assisted user interfaces for estimation of watershed morphologic parameters
-
Sarangi, A., Madramootoo, C. A. and Singh, D. K., Development of ArcGIS assisted user interfaces for estimation of watershed morphologic parameters. J. Soil Water Conserv., 2004, 3, 139-149.
-
(2004)
J. Soil Water Conserv.
, vol.3
, pp. 139-149
-
-
Sarangi, A.1
Madramootoo, C.A.2
Singh, D.K.3
-
23
-
-
84975030700
-
Quantitative analysis of watershed geomorphology
-
Strahler, A., Quantitative analysis of watershed geomorphology. EOS Trans. AGU, 1957, 38, 913-920.
-
(1957)
EOS Trans. AGU
, vol.38
, pp. 913-920
-
-
Strahler, A.1
-
24
-
-
0003068933
-
Selection, calibration and testing of hydrologic models
-
(eds Haan, C. T., Johnson, H. P. and Brakensiek, D. L.), American Society of Agricultural Engineers, St. Joseph, MI
-
James, I. D. and Burgess, S. J., Selection, calibration and testing of hydrologic models. In Hydrological Modeling of Small Watersheds (eds Haan, C. T., Johnson, H. P. and Brakensiek, D. L.), American Society of Agricultural Engineers, St. Joseph, MI, 1982, pp. 215-257.
-
(1982)
Hydrological Modeling of Small Watersheds
, pp. 215-257
-
-
James, I.D.1
Burgess, S.J.2
-
25
-
-
0004220111
-
-
McGraw Hill, Boston
-
Ritter, D. F., Kochel, R. C. and Miller, J. R., Process Geomorphology, McGraw Hill, Boston, 2002.
-
(2002)
Process Geomorphology
-
-
Ritter, D.F.1
Kochel, R.C.2
Miller, J.R.3
-
26
-
-
4544363374
-
Evaluation of geomorphic control on flood hazards through Geomorphic Instantaneous Unit Hydrograph
-
Jain, V. and Sinha, R., Evaluation of geomorphic control on flood hazards through Geomorphic Instantaneous Unit Hydrograph. Curr. Sci., 2003, 85, 1596-1600.
-
(2003)
Curr. Sci.
, vol.85
, pp. 1596-1600
-
-
Jain, V.1
Sinha, R.2
-
27
-
-
0004063090
-
-
Prentice Hall, NJ, 2nd edn.
-
Haykin, S., Neural Networks, Prentice Hall, NJ, 1999, 2nd edn.
-
(1999)
Neural Networks
-
-
Haykin, S.1
-
28
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J. H., Multivariate adaptive regression splines. Ann. Stat., 1991, 19, 1-141.
-
(1991)
Ann. Stat.
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
29
-
-
0037199712
-
River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
-
Sivakumar, B., Jayawardena, A. W. and Fernando, T. M. K. G., River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol., 2002, 265, 225-245.
-
(2002)
J. Hydrol.
, vol.265
, pp. 225-245
-
-
Sivakumar, B.1
Jayawardena, A.W.2
Fernando, T.M.K.G.3
-
30
-
-
0032005702
-
An artificial neural network approach to rainfall-runoff modeling
-
Dawson, C. W. and Wilby, R., An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J., 1998, 43, 47-66.
-
(1998)
Hydrol. Sci. J.
, vol.43
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
|