메뉴 건너뛰기




Volumn 89, Issue 12, 2005, Pages 2022-2033

Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed

Author keywords

Artificial Neural Network; Geomorphology; Regression splines; Runoff; Sediment yield

Indexed keywords


EID: 31744438288     PISSN: 00113891     EISSN: 00113891     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (40)

References (30)
  • 1
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam, M. R., Watanabe, K. and Saegusa, H., Runoff analysis in humid forest catchment with artificial neural network. J. Hydrol., 2000, 235, 117-136.
    • (2000) J. Hydrol. , vol.235 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 2
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K. L., Gupta, H. V. and Sorooshian, S., Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 1995, 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 3
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. and Ramasastri, K. S., A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process., 2000, 16, 1325-1330.
    • (2000) Hydrol. Process. , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 4
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M. N., Krajewski, W. F. and Cuykendall, R. R., Rainfall forecasting in space and time using a neural network. J. Hydrol., 1992, 137, 1-31.
    • (1992) J. Hydrol. , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-I: Preliminary concepts
    • ASCE task committee on application of ANNS in hydrology
    • ASCE, Artificial neural networks in hydrology-I: preliminary concepts. J. Hydrol. Eng., ASCE task committee on application of ANNS in hydrology, 2000, 5, 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 6
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-II: Hydrologic applications
    • ASCE, Artificial neural networks in hydrology-II: hydrologic applications. J. Hydrol. Eng., 2000, 5, 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-137
  • 7
    • 0001818563 scopus 로고    scopus 로고
    • Effective and efficient modeling for streamflow forecasting
    • (eds Govindaraju, R. S. and Rao, A. R.), Kluwer, Dordrecht
    • Gupta, H. V., Hsu, K. and Sorooshian, S., Effective and efficient modeling for streamflow forecasting. In Artificial Neural Networks in Hydrology (eds Govindaraju, R. S. and Rao, A. R.), Kluwer, Dordrecht, 2000, pp.7-22.
    • (2000) Artificial Neural Networks in Hydrology , pp. 7-22
    • Gupta, H.V.1    Hsu, K.2    Sorooshian, S.3
  • 8
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural network
    • Hsu, K., Gao, X. and Sorooshain, S., Precipitation estimation from remotely sensed information using artificial neural network. J. Appl. Meteorol., 1997, 36, 1176-1190.
    • (1997) J. Appl. Meteorol. , vol.36 , pp. 1176-1190
    • Hsu, K.1    Gao, X.2    Sorooshain, S.3
  • 9
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. and Dandy, G. C., Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Software, 2000, 15, 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.C.2
  • 10
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall runoff modeling using artificial neural networks
    • Tokar, A. S. and Johnson, P. A., Rainfall runoff modeling using artificial neural networks. ASCE J. Hydrol. Eng., 1999, 4, 232-239.
    • (1999) ASCE J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 11
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang, B. and Govindaraju, R., Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J. Hydrol., 2003, 273, 18-34.
    • (2003) J. Hydrol. , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.2
  • 12
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, N. and Thandaveswara, B. S., A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol., 1999, 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 13
    • 0024880831 scopus 로고
    • Multi-layer feed forward networks are universal approximators
    • Hornik, K., Stinchcombe, M. and White, M., Multi-layer feed forward networks are universal approximators. Neural Networks, 1989, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, M.3
  • 14
    • 0029416249 scopus 로고
    • Neural network models of rainfall-runoff process
    • Smith, J. and Eli, R.N., Neural network models of rainfall-runoff process. ASCE J. Water Resour. Plann. Manage., 1995, 121, 499-508.
    • (1995) ASCE J. Water Resour. Plann. Manage. , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 15
    • 0033827239 scopus 로고    scopus 로고
    • Comparison of ANNs and empirical approaches for predicting watershed runoff
    • Anmala, J., Zhang, B. and Govindaraju, R., Comparison of ANNs and empirical approaches for predicting watershed runoff. ASCE J. Water Resour. Plann. Manage., 2000, 126, 156-166.
    • (2000) ASCE J. Water Resour. Plann. Manage. , vol.126 , pp. 156-166
    • Anmala, J.1    Zhang, B.2    Govindaraju, R.3
  • 16
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural networks
    • Cannon, A. J. and Whitfield, P. H., Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural networks. J. Hydrol., 2002, 259, 136-151.
    • (2002) J. Hydrol. , vol.259 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 17
    • 28844444529 scopus 로고    scopus 로고
    • Use of geomorphological parameters for sediment yield prediction from watersheds
    • Sarangi, A. and Bhattacharya, A. K., Use of geomorphological parameters for sediment yield prediction from watersheds. J. Soil Water Conserv., 2002, 44, 99-106.
    • (2002) J. Soil Water Conserv. , vol.44 , pp. 99-106
    • Sarangi, A.1    Bhattacharya, A.K.2
  • 18
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using Artificial Neural Network Model
    • Nagy, H. M., Watanabe, K. and Hirano, M., Prediction of sediment load concentration in rivers using Artificial Neural Network Model. J. Hydraul. Eng., 2002, 128, 588-595.
    • (2002) J. Hydraul. Eng. , vol.128 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 19
    • 0042658013 scopus 로고    scopus 로고
    • Modeling flow and sediment transport in a river system using an artificial neural network
    • Yitian, L. and Gu, R. R., Modeling flow and sediment transport in a river system using an artificial neural network. Environ. Manage., 2003, 31, 122-134.
    • (2003) Environ. Manage. , vol.31 , pp. 122-134
    • Yitian, L.1    Gu, R.R.2
  • 20
    • 0036955683 scopus 로고    scopus 로고
    • Modelling the hydrology of an agricultural watershed in Quebec using SLURP
    • Romero, D., Madramootoo, C. A. and Enright, P., Modelling the hydrology of an agricultural watershed in Quebec using SLURP. Can. Biosyst. Eng., 2002, 44, 1.11-1.20.
    • (2002) Can. Biosyst. Eng. , vol.44
    • Romero, D.1    Madramootoo, C.A.2    Enright, P.3
  • 22
    • 31744444617 scopus 로고    scopus 로고
    • Development of ArcGIS assisted user interfaces for estimation of watershed morphologic parameters
    • Sarangi, A., Madramootoo, C. A. and Singh, D. K., Development of ArcGIS assisted user interfaces for estimation of watershed morphologic parameters. J. Soil Water Conserv., 2004, 3, 139-149.
    • (2004) J. Soil Water Conserv. , vol.3 , pp. 139-149
    • Sarangi, A.1    Madramootoo, C.A.2    Singh, D.K.3
  • 23
    • 84975030700 scopus 로고
    • Quantitative analysis of watershed geomorphology
    • Strahler, A., Quantitative analysis of watershed geomorphology. EOS Trans. AGU, 1957, 38, 913-920.
    • (1957) EOS Trans. AGU , vol.38 , pp. 913-920
    • Strahler, A.1
  • 24
    • 0003068933 scopus 로고
    • Selection, calibration and testing of hydrologic models
    • (eds Haan, C. T., Johnson, H. P. and Brakensiek, D. L.), American Society of Agricultural Engineers, St. Joseph, MI
    • James, I. D. and Burgess, S. J., Selection, calibration and testing of hydrologic models. In Hydrological Modeling of Small Watersheds (eds Haan, C. T., Johnson, H. P. and Brakensiek, D. L.), American Society of Agricultural Engineers, St. Joseph, MI, 1982, pp. 215-257.
    • (1982) Hydrological Modeling of Small Watersheds , pp. 215-257
    • James, I.D.1    Burgess, S.J.2
  • 26
    • 4544363374 scopus 로고    scopus 로고
    • Evaluation of geomorphic control on flood hazards through Geomorphic Instantaneous Unit Hydrograph
    • Jain, V. and Sinha, R., Evaluation of geomorphic control on flood hazards through Geomorphic Instantaneous Unit Hydrograph. Curr. Sci., 2003, 85, 1596-1600.
    • (2003) Curr. Sci. , vol.85 , pp. 1596-1600
    • Jain, V.1    Sinha, R.2
  • 27
    • 0004063090 scopus 로고    scopus 로고
    • Prentice Hall, NJ, 2nd edn.
    • Haykin, S., Neural Networks, Prentice Hall, NJ, 1999, 2nd edn.
    • (1999) Neural Networks
    • Haykin, S.1
  • 28
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H., Multivariate adaptive regression splines. Ann. Stat., 1991, 19, 1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 29
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A. W. and Fernando, T. M. K. G., River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol., 2002, 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 30
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, C. W. and Wilby, R., An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J., 1998, 43, 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.