메뉴 건너뛰기




Volumn 17, Issue 2, 2012, Pages 262-271

Validation of an ANN Flow Prediction Model Using a Multistation Cluster Analysis

Author keywords

Artificial neural network; Cluster analysis; Flow height; Model validation; Portugal

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; FLOW HEIGHT; FLOW PREDICTION; HIDDEN NEURONS; HYDROLOGICAL PREDICTION; HYDROMETRIC STATIONS; INPUT VARIABLES; LEADTIME; MODEL VALIDATION; NASH-SUTCLIFFE COEFFICIENT; PERFORMANCE CRITERION; PHYSICAL PROCESS; PORTUGAL; VALIDATION CRITERIA;

EID: 84858142021     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000426     Document Type: Article
Times cited : (14)

References (60)
  • 1
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • HESSCF, 1027-5606, 10.5194/hess-8-940-2004.
    • Anctil F. Lauzon N. Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions. Hydrol. Earth Syst. Sci. 2004, 8(5):940-958. HESSCF, 1027-5606, 10.5194/hess-8-940-2004.
    • (2004) Hydrol. Earth Syst. Sci. , vol.8 , Issue.5 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 2
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • EMSOFT, 1364-8152, 10.1016/S1364-8152(03)00135-X.
    • Anctil F. Perrin C. Andréassian V. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environ. Modell. Software 2004, 19(4):357-368. EMSOFT, 1364-8152, 10.1016/S1364-8152(03)00135-X.
    • (2004) Environ. Modell. Software , vol.19 , Issue.4 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andréassian, V.3
  • 3
    • 11944267778 scopus 로고    scopus 로고
    • Evaluation of neural network streamflow forecasting on 47 watersheds
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:1(85).
    • Anctil F. Rat A. Evaluation of neural network streamflow forecasting on 47 watersheds. J. Hydrol. Eng. 2005, 10(1):85-88. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:1(85).
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.1 , pp. 85-88
    • Anctil, F.1    Rat, A.2
  • 4
    • 0027594152 scopus 로고
    • Criteria for evaluation of watershed models
    • ASCE, JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(1993)119:3(429).
    • Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 1993, 119(3):429-442. ASCE, JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(1993)119:3(429).
    • (1993) J. Irrig. Drain. Eng. , vol.119 , Issue.3 , pp. 429-442
  • 5
    • 0002090746 scopus 로고
    • On the theoretical specification and sampling properties of autocorrelated time-series
    • 1466-6162, 10.2307/2983611.
    • Bartlett M.S. On the theoretical specification and sampling properties of autocorrelated time-series. Suppl. J. Roy. Statist. Soc. 1946, 8(1):27-41. 1466-6162, 10.2307/2983611.
    • (1946) Suppl. J. Roy. Statist. Soc. , vol.8 , Issue.1 , pp. 27-41
    • Bartlett, M.S.1
  • 6
    • 1542320087 scopus 로고    scopus 로고
    • Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2003.09.021.
    • Bathurst J.C. Ewen J. Parkin G. O'Connell P.E. Cooper J.D. Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses. J. Hydrol. 2004, 287(1-4):74-94. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2003.09.021.
    • (2004) J. Hydrol. , vol.287 , Issue.1-4 , pp. 74-94
    • Bathurst, J.C.1    Ewen, J.2    Parkin, G.3    O'Connell, P.E.4    Cooper, J.D.5
  • 8
    • 14644390927 scopus 로고    scopus 로고
    • Impact of climate change on river flooding assessed with different spatial model resolutions
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2004.07.013.
    • Booij M.J. Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol. 2005, 303(1-4):176-198. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2004.07.013.
    • (2005) J. Hydrol. , vol.303 , Issue.1-4 , pp. 176-198
    • Booij, M.J.1
  • 9
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.06.015.
    • Calvoa I.P. Portelab M.M. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol. 2007, 332(1-2):1-15. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.06.015.
    • (2007) J. Hydrol. , vol.332 , Issue.1-2 , pp. 1-15
    • Calvoa, I.P.1    Portelab, M.M.2
  • 10
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • WRERAQ, 0043-1397, 10.1029/1998WR900086.
    • Campolo M. Andreussi P. Soldati A. River flood forecasting with neural network model. Water Resour. Res. 1999, 35(4):1191-1197. WRERAQ, 0043-1397, 10.1029/1998WR900086.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 11
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno/Une approche à base de réseau de neurones artificiels pour la prévision des crues du fleuve Arno
    • HSJODN, 0262-6667, 10.1623/hysj.48.3.381.45286.
    • Campolo M. Soldati A. Andreussi P. Artificial neural network approach to flood forecasting in the River Arno/Une approche à base de réseau de neurones artificiels pour la prévision des crues du fleuve Arno. Hydrol. Sci. J. 2003, 48(3):381-398. HSJODN, 0262-6667, 10.1623/hysj.48.3.381.45286.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 12
    • 33846807570 scopus 로고    scopus 로고
    • Multi-step-ahead neural networks for flood forecasting/Réseaux de neurones à échéances multiples pour la prévision de crue
    • HSJODN, 0262-6667, 10.1623/hysj.52.1.114.
    • Chang F.J. Chiang Y.M. Chang L.C. Multi-step-ahead neural networks for flood forecasting/Réseaux de neurones à échéances multiples pour la prévision de crue. Hydrol. Sci. J. 2007, 52(1):114-130. HSJODN, 0262-6667, 10.1623/hysj.52.1.114.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.1 , pp. 114-130
    • Chang, F.J.1    Chiang, Y.M.2    Chang, L.C.3
  • 13
    • 69349101904 scopus 로고    scopus 로고
    • Ensemble flood forecasting: A review
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2009.06.005.
    • Cloke H.L. Pappenberger F. Ensemble flood forecasting: review. J. Hydrol. 2009, 375(3-4):613-626. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2009.06.005.
    • (2009) J. Hydrol. , vol.375 , Issue.3-4 , pp. 613-626
    • Cloke, H.L.1    Pappenberger, F.2
  • 14
    • 2342580800 scopus 로고    scopus 로고
    • Statistical procedures for evaluating daily and monthly hydrologic model predictions
    • TAAEAJ, 0001-2351.
    • Coffey M.E. Workman S.R. Taraba J.L. Fogle A.W. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Trans. ASAE 2004, 47(1):59-68. TAAEAJ, 0001-2351.
    • (2004) Trans. ASAE , vol.47 , Issue.1 , pp. 59-68
    • Coffey, M.E.1    Workman, S.R.2    Taraba, J.L.3    Fogle, A.W.4
  • 15
    • 49049120096 scopus 로고    scopus 로고
    • Using stochastic space-time models to map extreme precipitation in southern Portugal
    • 1561-8633, 10.5194/nhess-8-763-2008.
    • Costa A.C. Durão R. Pereira M.J. Soares A. Using stochastic space-time models to map extreme precipitation in southern Portugal. Nat. Hazards Earth Syst. Sci. 2008, 8(4):763-773. 1561-8633, 10.5194/nhess-8-763-2008.
    • (2008) Nat. Hazards Earth Syst. Sci. , vol.8 , Issue.4 , pp. 763-773
    • Costa, A.C.1    Durão, R.2    Pereira, M.J.3    Soares, A.4
  • 16
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of statistical measures for the standardized assessment of hydrological forecasts
    • EMSOFT, 1364-8152, 10.1016/j.envsoft.2006.06.008..
    • Dawson C.W. Abrahart R.J. See L.M. HydroTest: web-based toolbox of statistical measures for the standardized assessment of hydrological forecasts. Environ. Modell. Software 2005, 27(7):1034-1052. EMSOFT, 1364-8152, 10.1016/j.envsoft.2006.06.008.
    • (2005) Environ. Modell. Software , vol.27 , Issue.7 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 17
    • 67649240079 scopus 로고    scopus 로고
    • Discussion of 'Hydrologic regionalization of watersheds in Turkey' by Sabahattin Isik and Vijay P. Singh
    • JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000036
    • Demirel M.C. Kahya E. Rivera D. Discussion of 'Hydrologic regionalization of watersheds in Turkey' by Sabahattin Isik and Vijay P. Singh. J. Hydrol. Eng. 2009, 14(7):767-768. JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000036
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.7 , pp. 767-768
    • Demirel, M.C.1    Kahya, E.2    Rivera, D.3
  • 18
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana Basin, Portugal
    • 0965-9978, 10.1016/j.advengsoft.2008.08.002
    • Demirel M.C. Venancio A. Kahya E. Flow forecast by SWAT model and ANN in Pracana Basin, Portugal. Adv. Eng. Software 2009, 40(7):467-473. 0965-9978, 10.1016/j.advengsoft.2008.08.002
    • (2009) Adv. Eng. Software , vol.40 , Issue.7 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 19
    • 0343271970 scopus 로고
    • Neural network toolbox 6
    • user's guide, MathWorks, Natick, MA.
    • Demuth H. Beale M. Hagan M. Neural network toolbox 6. 1992, user's guide, MathWorks, Natick, MA.
    • (1992)
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 20
    • 79952403003 scopus 로고    scopus 로고
    • Appropriate flow forecasting for reservoir operation
    • Ph.D. thesis, Univ. of Twente, Enschede, The Netherlands.
    • Dong X. Appropriate flow forecasting for reservoir operation. 2005 Ph.D. thesis, Univ. of Twente, Enschede, The Netherlands.
    • (2005)
    • Dong, X.1
  • 21
    • 0003578015 scopus 로고
    • 3rd Ed., Halsted Press, Wiley, New York.
    • Everitt B. Cluster analysis 1993, 3rd Ed., Halsted Press, Wiley, New York.
    • (1993) Cluster analysis
    • Everitt, B.1
  • 22
    • 0030482829 scopus 로고    scopus 로고
    • Validation of catchment models for predicting land-use and climate change impacts. 1. Method
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(96)80026-6.
    • Ewen J. Parkin G. Validation of catchment models for predicting land-use and climate change impacts. 1. Method. J. Hydrol. 1996, 175(1-4):583-594. JHYDA7, 0022-1694, 10.1016/S0022-1694(96)80026-6.
    • (1996) J. Hydrol. , vol.175 , Issue.1-4 , pp. 583-594
    • Ewen, J.1    Parkin, G.2
  • 23
    • 33747212710 scopus 로고    scopus 로고
    • Evaluation of the National Weather Service operational hydrologic model and forecasts for the American River Basin
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2006)11:5(392).
    • Eylon S. Theresa M.C. Peter F. Konstantine P.G. Evaluation of the National Weather Service operational hydrologic model and forecasts for the American River Basin. J. Hydrol. Eng. 2006, 11(5):392-407. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2006)11:5(392).
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.5 , pp. 392-407
    • Eylon, S.1    Theresa, M.C.2    Peter, F.3    Konstantine, P.G.4
  • 24
    • 0029479393 scopus 로고
    • On the application of cluster analysis to growing season precipitation data in North America east of the Rockies
    • JLCLEL, 0894-8755, 10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.
    • Gong X. Richman M.B. On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Clim. 1995, 8(4):897-931. JLCLEL, 0894-8755, 10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.
    • (1995) J. Clim. , vol.8 , Issue.4 , pp. 897-931
    • Gong, X.1    Richman, M.B.2
  • 25
    • 0343750636 scopus 로고    scopus 로고
    • Multi-criterial validation of TOPMODEL in a mountainous catchment
    • HYPRE3, 0885-6087, 10.1002/(SICI)1099-1085(19990815)13:11<1603::AID-HYP830>3.0.CO;2-K.
    • Güntner A. Uhlenbrook S. Seibert J. Ch L. Multi-criterial validation of TOPMODEL in mountainous catchment. Hydrol. Process. 1999, 13(11):1603-1620. HYPRE3, 0885-6087, 10.1002/(SICI)1099-1085(19990815)13:11<1603::AID-HYP830>3.0.CO;2-K.
    • (1999) Hydrol. Process. , vol.13 , Issue.11 , pp. 1603-1620
    • Güntner, A.1    Uhlenbrook, S.2    Seibert, J.3    Ch, L.4
  • 26
    • 0029294197 scopus 로고
    • Statistical procedure for evaluating hydrologic/water quality models
    • TAAEAJ, 0001-2351.
    • Haan C.T. Allred B. Storm D.E. Sabbagh G.J. Prabhu S. Statistical procedure for evaluating hydrologic/water quality models. Trans. ASAE 1995, 38(3):725-733. TAAEAJ, 0001-2351.
    • (1995) Trans. ASAE , vol.38 , Issue.3 , pp. 725-733
    • Haan, C.T.1    Allred, B.2    Storm, D.E.3    Sabbagh, G.J.4    Prabhu, S.5
  • 27
    • 56849104524 scopus 로고    scopus 로고
    • Towards model evaluation and identification using self-organizing maps
    • HESSCF, 1027-5606, 10.5194/hess-12-657-2008.
    • Herbst M. Casper M.C. Towards model evaluation and identification using self-organizing maps. Hydrol. Earth Syst. Sci. 2008, 12(2):657-667. HESSCF, 1027-5606, 10.5194/hess-12-657-2008.
    • (2008) Hydrol. Earth Syst. Sci. , vol.12 , Issue.2 , pp. 657-667
    • Herbst, M.1    Casper, M.C.2
  • 28
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • WRERAQ, 0043-1397, 10.1029/95WR01955.
    • Hsu K. Gupta H.V. Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530. WRERAQ, 0043-1397, 10.1029/95WR01955.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 29
    • 41149094137 scopus 로고    scopus 로고
    • Streamflow regionalization: Case study of Turkey
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2008)13:4(205).
    • Kahya E. Kalayci S. Piechota T.C. Streamflow regionalization: Case study of Turkey. J. Hydrol. Eng. 2008, 13(4):205-214. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2008)13:4(205).
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.4 , pp. 205-214
    • Kahya, E.1    Kalayci, S.2    Piechota, T.C.3
  • 30
    • 36849033422 scopus 로고    scopus 로고
    • Hydrological model coupling with ANNs
    • HESSCF, 1027-5606, 10.5194/hess-11-1869-2007.
    • Kamp R.G. Savenije H.H. G. Hydrological model coupling with ANNs. Hydrol. Earth Syst. Sci. 2007, 11(6):1869-1881. HESSCF, 1027-5606, 10.5194/hess-11-1869-2007.
    • (2007) Hydrol. Earth Syst. Sci. , vol.11 , Issue.6 , pp. 1869-1881
    • Kamp, R.G.1    Savenije, H.H.G.2
  • 31
    • 33646560948 scopus 로고    scopus 로고
    • A comparison of low flow regionalization methods-catchment grouping
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.09.001.
    • Laaha G. Blöschl G. comparison of low flow regionalization methods-catchment grouping. J. Hydrol. 2006, 323(1-4):193-214. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.09.001.
    • (2006) J. Hydrol. , vol.323 , Issue.1-4 , pp. 193-214
    • Laaha, G.1    Blöschl, G.2
  • 32
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • WRERAQ, 0043-1397, 10.1029/1998WR900018.
    • Legates D.R. McCabe G.J. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35(1):233-241. WRERAQ, 0043-1397, 10.1029/1998WR900018.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 33
    • 0024647691 scopus 로고
    • Merits of statistical criteria for the performance of hydrological models
    • WARBAQ, 0043-1370, 10.1111/j.1752-1688.1989.tb03079.x.
    • Martinec J. Rango A. Merits of statistical criteria for the performance of hydrological models. Water Resour. Bull. 1989, 25(2):421-432. WARBAQ, 0043-1370, 10.1111/j.1752-1688.1989.tb03079.x.
    • (1989) Water Resour. Bull. , vol.25 , Issue.2 , pp. 421-432
    • Martinec, J.1    Rango, A.2
  • 34
    • 21344479285 scopus 로고
    • Parsimony, model adequacy and periodic correlation in time series forecasting
    • ISTRDP, 0306-7734, 10.2307/1403750.
    • McLeod A.I. Parsimony, model adequacy and periodic correlation in time series forecasting. Int. Statist. Rev./Rev. Int. Statist. 1993, 61(3):387-393. ISTRDP, 0306-7734, 10.2307/1403750.
    • (1993) Int. Statist. Rev./Rev. Int. Statist. , vol.61 , Issue.3 , pp. 387-393
    • McLeod, A.I.1
  • 35
    • 63149104793 scopus 로고    scopus 로고
    • Multi-criteria validation of artificial neural network rainfall-runoff modeling
    • HESSCF, 1027-5606, 10.5194/hess-13-411-2009.
    • Modarres R. Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrol. Earth Syst. Sci. 2009, 13(3):411-421. HESSCF, 1027-5606, 10.5194/hess-13-411-2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , Issue.3 , pp. 411-421
    • Modarres, R.1
  • 36
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • TAAEAJ, 0001-2351.
    • Moriasi D.N. Arnold J.G. Van Liew M.W. Bingner R.L. Harmel R.D. Veith T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASAE 2007, 50(3):885-900. TAAEAJ, 0001-2351.
    • (2007) Trans. ASAE , vol.50 , Issue.3 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Van Liew, M.W.3    Bingner, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 37
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-A discussion of principles
    • JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6.
    • Nash J.E. Sutcliffe J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10(3):282-290. JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 38
    • 0030482830 scopus 로고    scopus 로고
    • Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(96)80027-8.
    • Parkin G. O'Donnell G. Ewen J. Bathurst J.C. O'Connell P.E. Lavabre J. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for Mediterranean catchment. J. Hydrol. 1996, 175(1-4):595-613. JHYDA7, 0022-1694, 10.1016/S0022-1694(96)80027-8.
    • (1996) J. Hydrol. , vol.175 , Issue.1-4 , pp. 595-613
    • Parkin, G.1    O'Donnell, G.2    Ewen, J.3    Bathurst, J.C.4    O'Connell, P.E.5    Lavabre, J.6
  • 39
    • 0141682120 scopus 로고    scopus 로고
    • Improvement of a parsimonious model for streamflow simulation
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(03)00225-7.
    • Perrin C. Michel C. Andréassian V. Improvement of parsimonious model for streamflow simulation. J. Hydrol. 2003, 279(1-4):275-289. JHYDA7, 0022-1694, 10.1016/S0022-1694(03)00225-7.
    • (2003) J. Hydrol. , vol.279 , Issue.1-4 , pp. 275-289
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 40
    • 0030616293 scopus 로고    scopus 로고
    • Parameterization, calibration and validation of distributed hydrological models
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(96)03329-X.
    • Refsgaard J.C. Parameterization, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198(1-4):69-97. JHYDA7, 0022-1694, 10.1016/S0022-1694(96)03329-X.
    • (1997) J. Hydrol. , vol.198 , Issue.1-4 , pp. 69-97
    • Refsgaard, J.C.1
  • 41
    • 41449115030 scopus 로고    scopus 로고
    • Seasonal forecast of cooling water problems in the River Rhine
    • HYPRE3, 0885-6087, 10.1002/hyp.6988.
    • Rutten M. van de Giesen N. Baptist M. Icke J. Uijttewaal W. Seasonal forecast of cooling water problems in the River Rhine. Hydrol. Processes 2008, 22(7):1037-1045. HYPRE3, 0885-6087, 10.1002/hyp.6988.
    • (2008) Hydrol. Processes , vol.22 , Issue.7 , pp. 1037-1045
    • Rutten, M.1    van de Giesen, N.2    Baptist, M.3    Icke, J.4    Uijttewaal, W.5
  • 42
    • 34547136487 scopus 로고    scopus 로고
    • Do Nash values have value?
    • HYPRE3, 0885-6087, 10.1002/hyp.6825.
    • Schaefli B. Gupta H.V. Do Nash values have value?. Hydrol. Process. 2007, 21(15):2075-2080. HYPRE3, 0885-6087, 10.1002/hyp.6825.
    • (2007) Hydrol. Process. , vol.21 , Issue.15 , pp. 2075-2080
    • Schaefli, B.1    Gupta, H.V.2
  • 43
    • 23744461623 scopus 로고    scopus 로고
    • A conceptual glacio-hydrological model for high mountainous catchments
    • HESSCF, 1027-5606, 10.5194/hess-9-95-2005.
    • Schaefli B. Hingray B. Niggli M. Musy A. conceptual glacio-hydrological model for high mountainous catchments. Hydrol. Earth Syst. Sci. 2005, 9(1/2):95-109. HESSCF, 1027-5606, 10.5194/hess-9-95-2005.
    • (2005) Hydrol. Earth Syst. Sci. , vol.9 , Issue.1-2 , pp. 95-109
    • Schaefli, B.1    Hingray, B.2    Niggli, M.3    Musy, A.4
  • 44
    • 76749086682 scopus 로고    scopus 로고
    • Hydrological model performance and parameter estimation in the wavelet-domain
    • HESSCF, 1027-5606, 10.5194/hess-13-1921-2009.
    • Schaefli B. Zehe E. Hydrological model performance and parameter estimation in the wavelet-domain. Hydrol. Earth Syst. Sci. 2009, 13(10):1921-1936. HESSCF, 1027-5606, 10.5194/hess-13-1921-2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , Issue.10 , pp. 1921-1936
    • Schaefli, B.1    Zehe, E.2
  • 45
    • 0036152526 scopus 로고    scopus 로고
    • Hydrologic regionalization of watersheds. II: Applications
    • JWRMD5, 0733-9496, 10.1061/(ASCE)0733-9496(2002)128:1(12).
    • Shih-Min C. Ting-Kuei T. Stephan J.N. Hydrologic regionalization of watersheds. II: Applications. J. Water Resour. Plan. Manage. 2002, 128(1):12-20. JWRMD5, 0733-9496, 10.1061/(ASCE)0733-9496(2002)128:1(12).
    • (2002) J. Water Resour. Plan. Manage. , vol.128 , Issue.1 , pp. 12-20
    • Shih-Min, C.1    Ting-Kuei, T.2    Stephan, J.N.3
  • 46
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-lead precipitation prediction in California
    • JOAMEZ, 0894-8763, 10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO;2.
    • Silverman D. Dracup J.A. Artificial neural networks and long-lead precipitation prediction in California. J. Appl. Meteorol. 2000, 39(1):57-66. JOAMEZ, 0894-8763, 10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO;2.
    • (2000) J. Appl. Meteorol. , vol.39 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 47
    • 84858119031 scopus 로고    scopus 로고
    • Sistema Nacional de Informação de Recursos Hídricos (SNIRH)
    • 2009, Sistema Nacional de Informação de Recursos Hídricos (SNIRH)
    • (2009)
  • 48
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(02)00112-9.
    • Sivakumar B. Jayawardena A.W. Fernando T. River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 2002, 265(1-4):225-245. JHYDA7, 0022-1694, 10.1016/S0022-1694(02)00112-9.
    • (2002) J. Hydrol. , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.3
  • 49
    • 38549089135 scopus 로고    scopus 로고
    • Instance-based learning compared to other data-driven methods in hydrological forecasting
    • HYPRE3, 0885-6087, 10.1002/hyp.6592.
    • Solomatine D.P. Maskey M. Shrestha D.L. Instance-based learning compared to other data-driven methods in hydrological forecasting. Hydrol. Processes 2007, 22(2):275-287. HYPRE3, 0885-6087, 10.1002/hyp.6592.
    • (2007) Hydrol. Processes , vol.22 , Issue.2 , pp. 275-287
    • Solomatine, D.P.1    Maskey, M.2    Shrestha, D.L.3
  • 50
    • 33845270185 scopus 로고    scopus 로고
    • Comparison of process-based and artificial neural network approaches for streamflow modelling in an agricultural watershed
    • JWRAF5, 1093-474X, 10.1111/j.1752-1688.2006.tb04475.x.
    • Srivastava P. McNair J.N. Johnson T.E. Comparison of process-based and artificial neural network approaches for streamflow modelling in an agricultural watershed. J. Am. Water Resour. Assoc. 2006, 42(3):545-563. JWRAF5, 1093-474X, 10.1111/j.1752-1688.2006.tb04475.x.
    • (2006) J. Am. Water Resour. Assoc. , vol.42 , Issue.3 , pp. 545-563
    • Srivastava, P.1    McNair, J.N.2    Johnson, T.E.3
  • 51
    • 0037197571 scopus 로고    scopus 로고
    • A data driven algorithm for constructing artificial neural network rainfall runoff models
    • HYPRE3, 0885-6087, 10.1002/hyp.554.
    • Sudheer K.P. Gosain A.K. Ramasastri K.S. data driven algorithm for constructing artificial neural network rainfall runoff models. Hydrol. Process. 2002, 16(6):1325-1330. HYPRE3, 0885-6087, 10.1002/hyp.554.
    • (2002) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 52
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2009.12.013.
    • Tiwari M.K. Chatterjee C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382(1-4):20-33. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2009.12.013.
    • (2010) J. Hydrol. , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 53
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(156).
    • Tokar A.S. Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5(2):156-161. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(156).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 54
    • 0041471374 scopus 로고    scopus 로고
    • Redefining the climate zones of Turkey using cluster analysis
    • IJCLEU, 0899-8418, 10.1002/joc.910.
    • Ünal Y. Kindap T. Karaca M. Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol. 2003, 23(9):1045-1055. IJCLEU, 0899-8418, 10.1002/joc.910.
    • (2003) Int. J. Climatol. , vol.23 , Issue.9 , pp. 1045-1055
    • Ünal, Y.1    Kindap, T.2    Karaca, M.3
  • 55
    • 33847203986 scopus 로고    scopus 로고
    • Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2007)12:2(173).
    • Van Liew M.W. Veith T.L. Bosch D.D. Arnold J.G. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds. J. Hydrol. Eng. 2007, 12(2):173-189. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2007)12:2(173).
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.2 , pp. 173-189
    • Van Liew, M.W.1    Veith, T.L.2    Bosch, D.D.3    Arnold, J.G.4
  • 56
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • JSTNAL, 0003-1291, 10.2307/2282967.
    • Ward J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58(301):236-244. JSTNAL, 0003-1291, 10.2307/2282967.
    • (1963) J. Am. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 57
    • 0019707668 scopus 로고
    • On the validation of models
    • 0272-3646.
    • Willmott C.J. On the validation of models. Phys. Geogr. 1981, 2(2):184-194. 0272-3646.
    • (1981) Phys. Geogr. , vol.2 , Issue.2 , pp. 184-194
    • Willmott, C.J.1
  • 58
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • BAMIAT, 0003-0007, 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.
    • Willmott C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63(11):1309-1313. BAMIAT, 0003-0007, 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.
    • (1982) Bull. Am. Meteorol. Soc. , vol.63 , Issue.11 , pp. 1309-1313
    • Willmott, C.J.1
  • 59
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:3(216).
    • Wu J.S. Han J. Annambhotla S. Bryant S. Artificial neural networks for forecasting watershed runoff and stream flows. J. Hydrol. Eng. 2005, 10(3):216-222. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:3(216).
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.3 , pp. 216-222
    • Wu, J.S.1    Han, J.2    Annambhotla, S.3    Bryant, S.4
  • 60
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(98)00242-X.
    • Zealand C.M. Burn D.H. Simonovic S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 1999, 214(1-4):32-48. JHYDA7, 0022-1694, 10.1016/S0022-1694(98)00242-X.
    • (1999) J. Hydrol. , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.