메뉴 건너뛰기




Volumn 79, Issue 1, 2008, Pages 94-103

Constructing neural network sediment estimation models using a data-driven algorithm

Author keywords

A data driven algorithm; Neural networks; Sediment estimation

Indexed keywords

BACKPROPAGATION; ESTIMATION; IMAGE CLASSIFICATION; NEURAL NETWORKS; SEDIMENTATION; SEDIMENTOLOGY; SEDIMENTS; STATISTICAL METHODS; VECTORS;

EID: 48549096154     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matcom.2007.10.005     Document Type: Article
Times cited : (69)

References (26)
  • 1
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique
    • Bae D.-H., Jeong D.M., and Kim G. Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrol. Sci. J. 52 1 (2007) 99-113
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.-H.1    Jeong, D.M.2    Kim, G.3
  • 2
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty K., Mehrotra K., Mohan C.K., and Ranka S. Forecasting the behavior of multivariate time series using neural networks. Neural Netw. 5 (1992) 961-970
    • (1992) Neural Netw. , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 3
    • 48549105650 scopus 로고    scopus 로고
    • Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques
    • Chaves P., Tsukatani T., and Kojiri T. Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques. Math. Comput. Simulat. 43 (2004) 377-386
    • (2004) Math. Comput. Simulat. , vol.43 , pp. 377-386
    • Chaves, P.1    Tsukatani, T.2    Kojiri, T.3
  • 4
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu H.K. Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14 4 (2003) 417-427
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 5
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv. Water Resour. 27 (2004) 185-195
    • (2004) Adv. Water Resour. , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 6
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu H.K., and Kisi O. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nord. Hydrol. 36 1 (2005) 49-64
    • (2005) Nord. Hydrol. , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 7
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu H.K., and Kisi O. Methods to improve the neural network performance in suspended sediment estimation. J. Hydrol. 317 (2006) 221-238
    • (2006) J. Hydrol. , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G. Approximation by superposition of a sigmoidal function. Math. Control Signals Syst. 2 (1989) 303-314
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson W.C., and Wilby R. An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 43 1 (1998) 47-66
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 11
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • Firat M., and Gungor M. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simulat. 75 (2007) 87-96
    • (2007) Math. Comput. Simulat. , vol.75 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 12
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi O., and Laucelli D. Improving generalization of artificial neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 50 3 (2005) 439-457
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 13
    • 0024092569 scopus 로고
    • Short-term forecasting of snowmelt runoff using ARMAX models
    • Haltiner J.P., and Salas J.D. Short-term forecasting of snowmelt runoff using ARMAX models. Water Resour. Bull. 24 5 (1988) 1083-1089
    • (1988) Water Resour. Bull. , vol.24 , Issue.5 , pp. 1083-1089
    • Haltiner, J.P.1    Salas, J.D.2
  • 14
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain S.K. Development of integrated sediment rating curves using ANNs. ASCE J. Hydraulic Eng. 127 1 (2001) 30-37
    • (2001) ASCE J. Hydraulic Eng. , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 15
    • 32544437144 scopus 로고    scopus 로고
    • Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series
    • Jayawardena A.W., Xu P.C., Tsang F.L., and Li W.K. Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series. Hydrol. Sci. J. 51 1 (2006) 21-44
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.1 , pp. 21-44
    • Jayawardena, A.W.1    Xu, P.C.2    Tsang, F.L.3    Li, W.K.4
  • 16
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. ASCE J. Hydraulic Eng. 9 1 (2004) 60-63
    • (2004) ASCE J. Hydraulic Eng. , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 17
    • 17644433091 scopus 로고    scopus 로고
    • Daily suspended sediment modeling using a fuzzy-differential evolution approach
    • Kisi O. Daily suspended sediment modeling using a fuzzy-differential evolution approach. Hydrol. Sci. J. 49 1 (2004) 183-197
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.1 , pp. 183-197
    • Kisi, O.1
  • 18
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J. 50 4 (2005) 683-696
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 19
    • 1842478874 scopus 로고    scopus 로고
    • Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models
    • Linker R., and Seginer I. Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models. Math. Comput. Simulat. 65 (2004) 19-29
    • (2004) Math. Comput. Simulat. , vol.65 , pp. 19-29
    • Linker, R.1    Seginer, I.2
  • 20
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippman R. An introduction to computing with neural nets. IEEE ASSP Magazine 4 (1987) 4-22
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 4-22
    • Lippman, R.1
  • 21
    • 0031096422 scopus 로고    scopus 로고
    • Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks
    • Maier H.R., and Dandy G.C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Math. Comput. Simulat. 43 (1997) 377-386
    • (1997) Math. Comput. Simulat. , vol.43 , pp. 377-386
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • Nagy H.M., Watanabe K., and Hirano M. Prediction of sediment load concentration in rivers using artificial neural network model. ASCE J. Hydraulic Eng. 128 6 (2002) 588-595
    • (2002) ASCE J. Hydraulic Eng. , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 23
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman H., and Sunilkumar N. Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40 2 (1995) 145-163
    • (1995) Hydrol. Sci. J. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 24
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., and Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 16 (2002) 1325-1330
    • (2002) Hydrol. Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 25
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G. Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47 6 (2002) 879-892
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 26
    • 33644924333 scopus 로고    scopus 로고
    • Artificial neural networks for estimating daily total suspended sediment in natural streams
    • Tayfur G., and Guldal V. Artificial neural networks for estimating daily total suspended sediment in natural streams. Nord. Hydrol. 37 (2006) 69-79
    • (2006) Nord. Hydrol. , vol.37 , pp. 69-79
    • Tayfur, G.1    Guldal, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.