-
1
-
-
0030667434
-
Integrating genetic approaches into the discovery of anticancer drugs
-
Hartwell L.H., et al. Integrating genetic approaches into the discovery of anticancer drugs. Science 1997, 278:1064-1068.
-
(1997)
Science
, vol.278
, pp. 1064-1068
-
-
Hartwell, L.H.1
-
2
-
-
17244375049
-
Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
-
Bryant H.E., et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434:913-917.
-
(2005)
Nature
, vol.434
, pp. 913-917
-
-
Bryant, H.E.1
-
3
-
-
17244373777
-
Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
-
Farmer H., et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434:917-921.
-
(2005)
Nature
, vol.434
, pp. 917-921
-
-
Farmer, H.1
-
4
-
-
77955039099
-
Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial
-
Audeh M.W., et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010, 376:245-251.
-
(2010)
Lancet
, vol.376
, pp. 245-251
-
-
Audeh, M.W.1
-
5
-
-
77955019276
-
Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial
-
Tutt A., et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010, 376:235-244.
-
(2010)
Lancet
, vol.376
, pp. 235-244
-
-
Tutt, A.1
-
6
-
-
0035861532
-
Systematic genetic analysis with ordered arrays of yeast deletion mutants
-
Tong A.H., et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001, 294:2364-2368.
-
(2001)
Science
, vol.294
, pp. 2364-2368
-
-
Tong, A.H.1
-
7
-
-
73349095048
-
Systematic mapping of genetic interaction networks
-
Dixon S.J., et al. Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 2009, 43:601-625.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 601-625
-
-
Dixon, S.J.1
-
8
-
-
0030886602
-
A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae
-
Guacci V., et al. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 1997, 91:47-57.
-
(1997)
Cell
, vol.91
, pp. 47-57
-
-
Guacci, V.1
-
9
-
-
0030885925
-
Cohesins: chromosomal proteins that prevent premature separation of sister chromatids
-
Michaelis C., et al. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997, 91:35-45.
-
(1997)
Cell
, vol.91
, pp. 35-45
-
-
Michaelis, C.1
-
10
-
-
22244481613
-
The structure and function of SMC and kleisin complexes
-
Nasmyth K., Haering C.H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 2005, 74:595-648.
-
(2005)
Annu. Rev. Biochem.
, vol.74
, pp. 595-648
-
-
Nasmyth, K.1
Haering, C.H.2
-
11
-
-
73349127026
-
Cohesin: its roles and mechanisms
-
Nasmyth K., Haering C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 2009, 43:525-558.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 525-558
-
-
Nasmyth, K.1
Haering, C.H.2
-
12
-
-
78650186593
-
Cohesin organizes chromatin loops at DNA replication factories
-
Guillou E., et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 2010, 24:2812-2822.
-
(2010)
Genes Dev.
, vol.24
, pp. 2812-2822
-
-
Guillou, E.1
-
13
-
-
70449659953
-
Cohesin acetylation speeds the replication fork
-
Terret M.E., et al. Cohesin acetylation speeds the replication fork. Nature 2009, 462:231-234.
-
(2009)
Nature
, vol.462
, pp. 231-234
-
-
Terret, M.E.1
-
14
-
-
84867399846
-
Cohesin association to replication sites depends on rad50 and promotes fork restart
-
Tittel-Elmer M., et al. Cohesin association to replication sites depends on rad50 and promotes fork restart. Mol. Cell 2012, 48:98-108.
-
(2012)
Mol. Cell
, vol.48
, pp. 98-108
-
-
Tittel-Elmer, M.1
-
15
-
-
78549290265
-
Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
-
Crabbe L., et al. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 2010, 17:1391-1397.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1391-1397
-
-
Crabbe, L.1
-
16
-
-
0035954251
-
Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
-
Sjogren C., Nasmyth K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 2001, 11:991-995.
-
(2001)
Curr. Biol.
, vol.11
, pp. 991-995
-
-
Sjogren, C.1
Nasmyth, K.2
-
17
-
-
67650997080
-
Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus
-
Hadjur S., et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 2009, 460:410-413.
-
(2009)
Nature
, vol.460
, pp. 410-413
-
-
Hadjur, S.1
-
18
-
-
65649123756
-
Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster
-
Mishiro T., et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 2009, 28:1234-1245.
-
(2009)
EMBO J.
, vol.28
, pp. 1234-1245
-
-
Mishiro, T.1
-
19
-
-
73649145481
-
Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus
-
Nativio R., et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 2009, 5:e1000739.
-
(2009)
PLoS Genet.
, vol.5
-
-
Nativio, R.1
-
20
-
-
77957139539
-
Mediator and cohesin connect gene expression and chromatin architecture
-
Kagey M.H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467:430-435.
-
(2010)
Nature
, vol.467
, pp. 430-435
-
-
Kagey, M.H.1
-
21
-
-
80052042965
-
A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation
-
Seitan V.C., et al. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 2011, 476:467-471.
-
(2011)
Nature
, vol.476
, pp. 467-471
-
-
Seitan, V.C.1
-
22
-
-
79952030327
-
Can corruption of chromosome cohesion create a conduit to cancer?
-
Xu H., et al. Can corruption of chromosome cohesion create a conduit to cancer?. Nat. Rev. Cancer. 2011, 11:199-210.
-
(2011)
Nat. Rev. Cancer.
, vol.11
, pp. 199-210
-
-
Xu, H.1
-
23
-
-
84860389200
-
Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers
-
Xu H., et al. Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. Breast Cancer Res. 2011, 13:R9.
-
(2011)
Breast Cancer Res.
, vol.13
-
-
Xu, H.1
-
24
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
van de Vijver M.J., et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002, 347:1999-2009.
-
(2002)
N. Engl. J. Med.
, vol.347
, pp. 1999-2009
-
-
van de Vijver, M.J.1
-
25
-
-
15944424637
-
Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells
-
Atienza J.M., et al. Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. Mol. Cancer. Ther. 2005, 4:361-368.
-
(2005)
Mol. Cancer. Ther.
, vol.4
, pp. 361-368
-
-
Atienza, J.M.1
-
26
-
-
33645576066
-
Correlation of invasion and metastasis of cancer cells, and expression of the RAD21 gene in oral squamous cell carcinoma
-
Yamamoto G., et al. Correlation of invasion and metastasis of cancer cells, and expression of the RAD21 gene in oral squamous cell carcinoma. Virchows Arch. 2006, 448:435-441.
-
(2006)
Virchows Arch.
, vol.448
, pp. 435-441
-
-
Yamamoto, G.1
-
27
-
-
58849147078
-
Human Sgo1 downregulation leads to chromosomal instability in colorectal cancer
-
Iwaizumi M., et al. Human Sgo1 downregulation leads to chromosomal instability in colorectal cancer. Gut 2009, 58:249-260.
-
(2009)
Gut
, vol.58
, pp. 249-260
-
-
Iwaizumi, M.1
-
28
-
-
40849149557
-
Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers
-
Barber T.D., et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:3443-3448.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 3443-3448
-
-
Barber, T.D.1
-
29
-
-
84862776906
-
Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing
-
Ding L., et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012, 481:506-510.
-
(2012)
Nature
, vol.481
, pp. 506-510
-
-
Ding, L.1
-
30
-
-
84864255882
-
The origin and evolution of mutations in acute myeloid leukemia
-
Welch J.S., et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012, 150:264-278.
-
(2012)
Cell
, vol.150
, pp. 264-278
-
-
Welch, J.S.1
-
31
-
-
69149100639
-
Acquired copy number alterations in adult acute myeloid leukemia genomes
-
Walter M.J., et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12950-12955.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 12950-12955
-
-
Walter, M.J.1
-
32
-
-
70349334416
-
Are there any more ovarian tumor suppressor genes?. A new perspective using ultra high-resolution copy number and loss of heterozygosity analysis
-
Gorringe K.L., et al. Are there any more ovarian tumor suppressor genes?. A new perspective using ultra high-resolution copy number and loss of heterozygosity analysis. Genes Chromosomes Cancer 2009, 48:931-942.
-
(2009)
Genes Chromosomes Cancer
, vol.48
, pp. 931-942
-
-
Gorringe, K.L.1
-
33
-
-
79959838081
-
Integrated genomic analyses of ovarian carcinoma
-
Cancer Genome Atlas Research Network
-
Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474:609-615.
-
(2011)
Nature
, vol.474
, pp. 609-615
-
-
-
34
-
-
80051874823
-
Mutational inactivation of STAG2 causes aneuploidy in human cancer
-
Solomon D.A., et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011, 333:1039-1043.
-
(2011)
Science
, vol.333
, pp. 1039-1043
-
-
Solomon, D.A.1
-
35
-
-
84866753146
-
Mutational and expressional analyses of STAG2 gene in solid cancers
-
Kim M.S., et al. Mutational and expressional analyses of STAG2 gene in solid cancers. Neoplasma 2012, 59:524-529.
-
(2012)
Neoplasma
, vol.59
, pp. 524-529
-
-
Kim, M.S.1
-
36
-
-
70449731229
-
Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells
-
Canudas S., Smith S. Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J. Cell Biol. 2009, 187:165-173.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 165-173
-
-
Canudas, S.1
Smith, S.2
-
37
-
-
84860507563
-
Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres
-
Remeseiro S., et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 2012, 31:2076-2089.
-
(2012)
EMBO J.
, vol.31
, pp. 2076-2089
-
-
Remeseiro, S.1
-
38
-
-
84864877056
-
Mutability and mutational spectrum of chromosome transmission fidelity genes
-
Stirling P.C., et al. Mutability and mutational spectrum of chromosome transmission fidelity genes. Chromosoma 2012, 121:263-275.
-
(2012)
Chromosoma
, vol.121
, pp. 263-275
-
-
Stirling, P.C.1
-
39
-
-
77953132992
-
Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair
-
Heidinger-Pauli J.M., et al. Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr. Biol. 2010, 20:957-963.
-
(2010)
Curr. Biol.
, vol.20
, pp. 957-963
-
-
Heidinger-Pauli, J.M.1
-
40
-
-
2642565901
-
NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome
-
Tonkin E.T., et al. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat. Genet. 2004, 36:636-641.
-
(2004)
Nat. Genet.
, vol.36
, pp. 636-641
-
-
Tonkin, E.T.1
-
41
-
-
2642542322
-
Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B
-
Krantz I.D., et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 2004, 36:631-635.
-
(2004)
Nat. Genet.
, vol.36
, pp. 631-635
-
-
Krantz, I.D.1
-
42
-
-
34249041230
-
Exploring genetic interactions and networks with yeast
-
Boone C., et al. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 2007, 8:437-449.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 437-449
-
-
Boone, C.1
-
43
-
-
84859223202
-
Synthetic lethality of cohesins with PARPs and replication fork mediators
-
McLellan J.L., et al. Synthetic lethality of cohesins with PARPs and replication fork mediators. PLoS Genet. 2012, 8:e1002574.
-
(2012)
PLoS Genet.
, vol.8
-
-
McLellan, J.L.1
-
44
-
-
33644873184
-
BioGRID: a general repository for interaction datasets
-
Stark C., et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006, 34:D535-D539.
-
(2006)
Nucleic Acids Res.
, vol.34
-
-
Stark, C.1
-
45
-
-
84861322877
-
Topoisomerase I, poisoning results in PARP-mediated replication fork reversal
-
Ray Chaudhuri A., et al. Topoisomerase I, poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 2012, 19:417-423.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 417-423
-
-
Ray Chaudhuri, A.1
-
46
-
-
67649862225
-
Replication fork reversal and the maintenance of genome stability
-
Atkinson J., McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 2009, 37:3475-3492.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 3475-3492
-
-
Atkinson, J.1
McGlynn, P.2
-
47
-
-
0035951787
-
Positive torsional strain causes the formation of a four-way junction at replication forks
-
Postow L., et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 2001, 276:2790-2796.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 2790-2796
-
-
Postow, L.1
-
48
-
-
33646122683
-
ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks
-
Trenz K., et al. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 2006, 25:1764-1774.
-
(2006)
EMBO J.
, vol.25
, pp. 1764-1774
-
-
Trenz, K.1
-
49
-
-
69849097500
-
PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination
-
Bryant H.E., et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 2009, 28:2601-2615.
-
(2009)
EMBO J.
, vol.28
, pp. 2601-2615
-
-
Bryant, H.E.1
-
50
-
-
67349167663
-
The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress
-
Tittel-Elmer M., et al. The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J. 2009, 28:1142-1156.
-
(2009)
EMBO J.
, vol.28
, pp. 1142-1156
-
-
Tittel-Elmer, M.1
-
51
-
-
59449101071
-
PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA
-
Sugimura K., et al. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 2008, 183:1203-1212.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 1203-1212
-
-
Sugimura, K.1
-
52
-
-
84862758175
-
New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
-
Gibson B.A., Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 2012, 13:411-424.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 411-424
-
-
Gibson, B.A.1
Kraus, W.L.2
-
53
-
-
80052168685
-
The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings
-
Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 2011, 5:387-393.
-
(2011)
Mol. Oncol.
, vol.5
, pp. 387-393
-
-
Helleday, T.1
-
54
-
-
34547225606
-
Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase
-
Fisher A.E., et al. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell. Biol. 2007, 27:5597-5605.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 5597-5605
-
-
Fisher, A.E.1
-
55
-
-
79952747328
-
Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells
-
Patel A.G., et al. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3406-3411.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 3406-3411
-
-
Patel, A.G.1
-
56
-
-
84859187259
-
Systematic identification of genomic markers of drug sensitivity in cancer cells
-
Garnett M.J., et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483:570-575.
-
(2012)
Nature
, vol.483
, pp. 570-575
-
-
Garnett, M.J.1
-
57
-
-
0242588748
-
Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor
-
Miknyoczki S.J., et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer. Ther. 2003, 2:371-382.
-
(2003)
Mol. Cancer. Ther.
, vol.2
, pp. 371-382
-
-
Miknyoczki, S.J.1
-
58
-
-
70350124025
-
HARPing on about the DNA damage response during replication
-
Driscoll R., Cimprich K.A. HARPing on about the DNA damage response during replication. Genes Dev. 2009, 23:2359-2365.
-
(2009)
Genes Dev.
, vol.23
, pp. 2359-2365
-
-
Driscoll, R.1
Cimprich, K.A.2
-
59
-
-
84864910694
-
Finally, polyubiquitinated PCNA gets recognized
-
Zeman M.K., Cimprich K.A. Finally, polyubiquitinated PCNA gets recognized. Mol. Cell 2012, 47:333-334.
-
(2012)
Mol. Cell
, vol.47
, pp. 333-334
-
-
Zeman, M.K.1
Cimprich, K.A.2
-
60
-
-
71749086347
-
Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks
-
Bando M., et al. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J. Biol. Chem. 2009, 284:34355-34365.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 34355-34365
-
-
Bando, M.1
-
61
-
-
33645717628
-
GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
-
Gambus A., et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 2006, 8:358-366.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 358-366
-
-
Gambus, A.1
-
62
-
-
70350572751
-
A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome
-
Gambus A., et al. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J. 2009, 28:2992-3004.
-
(2009)
EMBO J.
, vol.28
, pp. 2992-3004
-
-
Gambus, A.1
-
63
-
-
33748424969
-
Establishment of sister chromatid cohesion at the S. cerevisiae replication fork
-
Lengronne A., et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 2006, 23:787-799.
-
(2006)
Mol. Cell
, vol.23
, pp. 787-799
-
-
Lengronne, A.1
-
64
-
-
84855201599
-
Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint
-
M110.005561
-
Kubota T., et al. Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint. Mol. Cell. Proteomics 2011, 10. M110.005561.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Kubota, T.1
-
65
-
-
1642360837
-
Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion
-
Skibbens R.V. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 2004, 166:33-42.
-
(2004)
Genetics
, vol.166
, pp. 33-42
-
-
Skibbens, R.V.1
-
66
-
-
65549132836
-
Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage
-
Heidinger-Pauli J.M., et al. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol. Cell 2009, 34:311-321.
-
(2009)
Mol. Cell
, vol.34
, pp. 311-321
-
-
Heidinger-Pauli, J.M.1
-
67
-
-
33751237384
-
Wapl controls the dynamic association of cohesin with chromatin
-
Kueng S., et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 2006, 127:955-967.
-
(2006)
Cell
, vol.127
, pp. 955-967
-
-
Kueng, S.1
-
68
-
-
62549130668
-
Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction
-
Sutani T., et al. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 2009, 19:492-497.
-
(2009)
Curr. Biol.
, vol.19
, pp. 492-497
-
-
Sutani, T.1
-
69
-
-
84861888851
-
Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1
-
Ying S., et al. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res. 2012, 72:2814-2821.
-
(2012)
Cancer Res.
, vol.72
, pp. 2814-2821
-
-
Ying, S.1
-
70
-
-
78649349810
-
A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage
-
Chou D.M., et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18475-18480.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 18475-18480
-
-
Chou, D.M.1
|