-
1
-
-
40849141236
-
The Saccharomyces cerevisiae homolog of p24 is essential for maintaining the association of p150Glued with the dynactin complex
-
Amaro, I.A., M. Costanzo, C. Boone, and T.C. Huffaker. 2008. The Saccharomyces cerevisiae homolog of p24 is essential for maintaining the association of p150Glued with the dynactin complex. Genetics. 178:703-709. http://dx.doi.org/10.1534/genetics.107.079103
-
(2008)
Genetics
, vol.178
, pp. 703-709
-
-
Amaro, I.A.1
Costanzo, M.2
Boone, C.3
Huffaker, T.C.4
-
2
-
-
0029417238
-
Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo
-
Blangy, A., H.A. Lane, P. d'Hérin, M. Harper, M. Kress, and E.A. Nigg. 1995. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell. 83:1159-1169. http://dx.doi.org/10.1016/0092-8674(95)90142-6
-
(1995)
Cell
, vol.83
, pp. 1159-1169
-
-
Blangy, A.1
Lane, H.A.2
d'Hérin, P.3
Harper, M.4
Kress, M.5
Nigg, E.A.6
-
3
-
-
79952401083
-
A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase
-
Bolhy, S., I. Bouhlel, E. Dultz, T. Nayak, M. Zuccolo, X. Gatti, R. Vallee, J. Ellenberg, and V. Doye. 2011. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J. Cell Biol. 192:855-871. http://dx.doi.org/10.1083/jcb.201007118
-
(2011)
J. Cell Biol.
, vol.192
, pp. 855-871
-
-
Bolhy, S.1
Bouhlel, I.2
Dultz, E.3
Nayak, T.4
Zuccolo, M.5
Gatti, X.6
Vallee, R.7
Ellenberg, J.8
Doye, V.9
-
4
-
-
0030727535
-
Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dyneindependent maintenance of membrane organelle distribution
-
Burkhardt, J.K., C.J. Echeverri, T. Nilsson, and R.B. Vallee. 1997. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dyneindependent maintenance of membrane organelle distribution. J. Cell Biol. 139:469-484. http://dx.doi.org/10.1083/jcb.139.2.469
-
(1997)
J. Cell Biol.
, vol.139
, pp. 469-484
-
-
Burkhardt, J.K.1
Echeverri, C.J.2
Nilsson, T.3
Vallee, R.B.4
-
5
-
-
0033083051
-
Cloning and characterization of two cytoplasmic dynein intermediate chain genes in mouse and human
-
Crackower, M.A., D.S. Sinasac, J. Xia, J. Motoyama, M. Prochazka, J.M. Rommens, S.W. Scherer, and L.C. Tsui. 1999. Cloning and characterization of two cytoplasmic dynein intermediate chain genes in mouse and human. Genomics. 55:257-267. http://dx.doi.org/10.1006/geno.1998.5665
-
(1999)
Genomics.
, vol.55
, pp. 257-267
-
-
Crackower, M.A.1
Sinasac, D.S.2
Xia, J.3
Motoyama, J.4
Prochazka, M.5
Rommens, J.M.6
Scherer, S.W.7
Tsui, L.C.8
-
6
-
-
33644747344
-
A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules
-
Culver-Hanlon, T.L., S.A. Lex, A.D. Stephens, N.J. Quintyne, and S.J. King. 2006. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat. Cell Biol. 8:264-270. http://dx.doi.org/10.1038/ncb1370
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 264-270
-
-
Culver-Hanlon, T.L.1
Lex, S.A.2
Stephens, A.D.3
Quintyne, N.J.4
King, S.J.5
-
7
-
-
79959362779
-
Cohesion fatigue induces chromatid separation in cells delayed at metaphase
-
Daum, J.R., T.A. Potapova, S. Sivakumar, J.J. Daniel, J.N. Flynn, S. Rankin, and G.J. Gorbsky. 2011. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr. Biol. 21:1018-1024. http://dx.doi.org/10.1016/j.cub.2011.05.032
-
(2011)
Curr. Biol.
, vol.21
, pp. 1018-1024
-
-
Daum, J.R.1
Potapova, T.A.2
Sivakumar, S.3
Daniel, J.J.4
Flynn, J.N.5
Rankin, S.6
Gorbsky, G.J.7
-
8
-
-
4644263812
-
In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities
-
DeBonis, S., D.A. Skoufias, L. Lebeau, R. Lopez, G. Robin, R.L. Margolis, R.H. Wade, and F. Kozielski. 2004. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol. Cancer Ther. 3:1079-1090.
-
(2004)
Mol. Cancer Ther.
, vol.3
, pp. 1079-1090
-
-
DeBonis, S.1
Skoufias, D.A.2
Lebeau, L.3
Lopez, R.4
Robin, G.5
Margolis, R.L.6
Wade, R.H.7
Kozielski, F.8
-
9
-
-
0036469076
-
Dynein at the cortex
-
Dujardin, D.L., and R.B. Vallee. 2002. Dynein at the cortex. Curr. Opin. Cell Biol. 14:44-49. http://dx.doi.org/10.1016/S0955-0674(01)00292-7
-
(2002)
Curr. Opin. Cell Biol.
, vol.14
, pp. 44-49
-
-
Dujardin, D.L.1
Vallee, R.B.2
-
10
-
-
0029913484
-
Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis
-
Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132:617-633. http://dx.doi.org/10.1083/jcb.132.4.617
-
(1996)
J. Cell Biol.
, vol.132
, pp. 617-633
-
-
Echeverri, C.J.1
Paschal, B.M.2
Vaughan, K.T.3
Vallee, R.B.4
-
11
-
-
0032728976
-
Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end
-
Eckley, D.M., S.R. Gill, K.A. Melkonian, J.B. Bingham, H.V. Goodson, J.E. Heuser, and T.A. Schroer. 1999. Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end. J. Cell Biol. 147:307-320. http://dx.doi.org/10.1083/jcb.147.2.307
-
(1999)
J. Cell Biol.
, vol.147
, pp. 307-320
-
-
Eckley, D.M.1
Gill, S.R.2
Melkonian, K.A.3
Bingham, J.B.4
Goodson, H.V.5
Heuser, J.E.6
Schroer, T.A.7
-
12
-
-
84863740946
-
Lis1 is an initiation factor for dynein-driven organelle transport
-
Egan, M.J., K. Tan, and S.L. Reck-Peterson. 2012. Lis1 is an initiation factor for dynein-driven organelle transport. J. Cell Biol. 197:971-982. http://dx.doi.org/10.1083/jcb.201112101
-
(2012)
J. Cell Biol.
, vol.197
, pp. 971-982
-
-
Egan, M.J.1
Tan, K.2
Reck-Peterson, S.L.3
-
13
-
-
0033777678
-
A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function
-
Faulkner, N.E., D.L. Dujardin, C.Y. Tai, K.T. Vaughan, C.B. O'Connell, Y. Wang, and R.B. Vallee. 2000. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat. Cell Biol. 2:784-791. http://dx.doi.org/10.1038/35041020
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 784-791
-
-
Faulkner, N.E.1
Dujardin, D.L.2
Tai, C.Y.3
Vaughan, K.T.4
O'Connell, C.B.5
Wang, Y.6
Vallee, R.B.7
-
14
-
-
71849094525
-
Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules
-
Ferenz, N.P., R. Paul, C. Fagerstrom, A. Mogilner, and P. Wadsworth. 2009. Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules. Curr. Biol. 19:1833-1838. http://dx.doi.org/10.1016/j.cub.2009.09.025
-
(2009)
Curr. Biol.
, vol.19
, pp. 1833-1838
-
-
Ferenz, N.P.1
Paul, R.2
Fagerstrom, C.3
Mogilner, A.4
Wadsworth, P.5
-
15
-
-
51149118049
-
A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex
-
Gassmann, R., A. Essex, J.S. Hu, P.S. Maddox, F. Motegi, A. Sugimoto, S.M. O'Rourke, B. Bowerman, I. McLeod, J.R. Yates III, et al. 2008. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22:2385-2399. http://dx.doi.org/10.1101/gad.1687508
-
(2008)
Genes Dev.
, vol.22
, pp. 2385-2399
-
-
Gassmann, R.1
Essex, A.2
Hu, J.S.3
Maddox, P.S.4
Motegi, F.5
Sugimoto, A.6
O'Rourke, S.M.7
Bowerman, B.8
McLeod, I.9
Yates, J.R.10
-
16
-
-
77951875761
-
Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells
-
Gassmann, R., A.J. Holland, D. Varma, X. Wan, F. Civril, D.W. Cleveland, K. Oegema, E.D. Salmon, and A. Desai. 2010. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 24:957-971. http://dx.doi.org/10.1101/gad.1886810
-
(2010)
Genes Dev.
, vol.24
, pp. 957-971
-
-
Gassmann, R.1
Holland, A.J.2
Varma, D.3
Wan, X.4
Civril, F.5
Cleveland, D.W.6
Oegema, K.7
Salmon, E.D.8
Desai, A.9
-
17
-
-
0026345013
-
Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein
-
Gill, S.R., T.A. Schroer, I. Szilak, E.R. Steuer, M.P. Sheetz, and D.W. Cleveland. 1991. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115:1639-1650. http://dx.doi.org/10.1083/jcb.115.6.1639
-
(1991)
J. Cell Biol.
, vol.115
, pp. 1639-1650
-
-
Gill, S.R.1
Schroer, T.A.2
Szilak, I.3
Steuer, E.R.4
Sheetz, M.P.5
Cleveland, D.W.6
-
18
-
-
0342265157
-
Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo
-
Gönczy, P., S. Pichler, M. Kirkham, and A.A. Hyman. 1999. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147:135-150. http://dx.doi.org/10.1083/jcb.147.1.135
-
(1999)
J. Cell Biol.
, vol.147
, pp. 135-150
-
-
Gönczy, P.1
Pichler, S.2
Kirkham, M.3
Hyman, A.A.4
-
19
-
-
27544447708
-
Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins
-
Goshima, G., F. Nédélec, and R.D. Vale. 2005. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171:229-240. http://dx.doi.org/10.1083/jcb.200505107
-
(2005)
J. Cell Biol.
, vol.171
, pp. 229-240
-
-
Goshima, G.1
Nédélec, F.2
Vale, R.D.3
-
20
-
-
34250751295
-
Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore
-
Griffis, E.R., N. Stuurman, and R.D. Vale. 2007. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177:1005-1015. http://dx.doi.org/10.1083/jcb.200702062
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1005-1015
-
-
Griffis, E.R.1
Stuurman, N.2
Vale, R.D.3
-
21
-
-
81755162750
-
p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment
-
Hagan, R.S., M.S. Manak, H.K. Buch, M.G. Meier, P. Meraldi, J.V. Shah, and P.K. Sorger. 2011. p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol. Biol. Cell. 22: 4236-4246. http://dx.doi.org/10.1091/mbc.E11-03-0216
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 4236-4246
-
-
Hagan, R.S.1
Manak, M.S.2
Buch, H.K.3
Meier, M.G.4
Meraldi, P.5
Shah, J.V.6
Sorger, P.K.7
-
22
-
-
77954568867
-
The crystal structure of dynein intermediate chain-light chain roadblock complex gives new insights into dynein assembly
-
Hall, J., Y. Song, P.A. Karplus, and E. Barbar. 2010. The crystal structure of dynein intermediate chain-light chain roadblock complex gives new insights into dynein assembly. J. Biol. Chem. 285:22566-22575. http://dx.doi.org/10.1074/jbc.M110.103861
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22566-22575
-
-
Hall, J.1
Song, Y.2
Karplus, P.A.3
Barbar, E.4
-
23
-
-
0029836330
-
Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts
-
Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature. 382: 420-425. http://dx.doi.org/10.1038/382420a0
-
(1996)
Nature.
, vol.382
, pp. 420-425
-
-
Heald, R.1
Tournebize, R.2
Blank, T.3
Sandaltzopoulos, R.4
Becker, P.5
Hyman, A.6
Karsenti, E.7
-
24
-
-
0035965256
-
beta III spectrin binds to the Arp1 subunit of dynactin
-
Holleran, E.A., L.A. Ligon, M. Tokito, M.C. Stankewich, J.S. Morrow, and E.L. Holzbaur. 2001. beta III spectrin binds to the Arp1 subunit of dynactin. J. Biol. Chem. 276:36598-36605. http://dx.doi.org/10.1074/jbc.M104838200
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36598-36605
-
-
Holleran, E.A.1
Ligon, L.A.2
Tokito, M.3
Stankewich, M.C.4
Morrow, J.S.5
Holzbaur, E.L.6
-
25
-
-
0035945356
-
Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation
-
Howell, B.J., B.F. McEwen, J.C. Canman, D.B. Hoffman, E.M. Farrar, C.L. Rieder, and E.D. Salmon. 2001. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155:1159-1172. http://dx.doi.org/10.1083/jcb.200105093
-
(2001)
J. Cell Biol.
, vol.155
, pp. 1159-1172
-
-
Howell, B.J.1
McEwen, B.F.2
Canman, J.C.3
Hoffman, D.B.4
Farrar, E.M.5
Rieder, C.L.6
Salmon, E.D.7
-
26
-
-
84865679752
-
Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor
-
Huang, J., A.J. Roberts, A.E. Leschziner, and S.L. Reck-Peterson. 2012. Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor. Cell. 150:975-986. http://dx.doi.org/10.1016/j.cell.2012.07.022
-
(2012)
Cell.
, vol.150
, pp. 975-986
-
-
Huang, J.1
Roberts, A.J.2
Leschziner, A.E.3
Reck-Peterson, S.L.4
-
27
-
-
77954939494
-
Molecular and functional basis for the scaffolding role of the p50/dynamitin subunit of the microtubule-associated dynactin complex
-
Jacquot, G., P. Maidou-Peindara, and S. Benichou. 2010. Molecular and functional basis for the scaffolding role of the p50/dynamitin subunit of the microtubule-associated dynactin complex. J. Biol. Chem. 285:23019- 23031. http://dx.doi.org/10.1074/jbc.M110.100602
-
(2010)
J. Biol. Chem.
, vol.285
-
-
Jacquot, G.1
Maidou-Peindara, P.2
Benichou, S.3
-
28
-
-
33847003020
-
Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin
-
Johansson, M., N. Rocha, W. Zwart, I. Jordens, L. Janssen, C. Kuijl, V.M. Olkkonen, and J. Neefjes. 2007. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. J. Cell Biol. 176:459-471. http://dx.doi.org/10.1083/jcb.200606077
-
(2007)
J. Cell Biol.
, vol.176
, pp. 459-471
-
-
Johansson, M.1
Rocha, N.2
Zwart, W.3
Jordens, I.4
Janssen, L.5
Kuijl, C.6
Olkkonen, V.M.7
Neefjes, J.8
-
29
-
-
18344371892
-
The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks
-
Kapitein, L.C., E.J. Peterman, B.H. Kwok, J.H. Kim, T.M. Kapoor, and C.F. Schmidt. 2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature. 435:114-118. http://dx.doi.org/10.1038/nature03503
-
(2005)
Nature.
, vol.435
, pp. 114-118
-
-
Kapitein, L.C.1
Peterman, E.J.2
Kwok, B.H.3
Kim, J.H.4
Kapoor, T.M.5
Schmidt, C.F.6
-
30
-
-
70450228589
-
Regulators of the cytoplasmic dynein motor
-
Kardon, J.R., and R.D. Vale. 2009. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10:854-865. http://dx.doi.org/10.1038/nrm2804
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 854-865
-
-
Kardon, J.R.1
Vale, R.D.2
-
31
-
-
65249170094
-
Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin
-
Kardon, J.R., S.L. Reck-Peterson, and R.D. Vale. 2009. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc. Natl. Acad. Sci. USA. 106:5669-5674. http://dx.doi.org/10.1073/pnas.0900976106
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 5669-5674
-
-
Kardon, J.R.1
Reck-Peterson, S.L.2
Vale, R.D.3
-
32
-
-
0033004145
-
Cytoplasmic dynein and dynactin in cell division and intracellular transport
-
Karki, S., and E.L. Holzbaur. 1999. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11:45-53. http://dx.doi.org/10.1016/S0955-0674(99)80006-4
-
(1999)
Curr. Opin. Cell Biol.
, vol.11
, pp. 45-53
-
-
Karki, S.1
Holzbaur, E.L.2
-
33
-
-
0030025443
-
A bipolar kinesin
-
Kashina, A.S., R.J. Baskin, D.G. Cole, K.P. Wedaman, W.M. Saxton, and J.M. Scholey. 1996. A bipolar kinesin. Nature. 379:270-272. http://dx.doi.org/10.1038/379270a0
-
(1996)
Nature.
, vol.379
, pp. 270-272
-
-
Kashina, A.S.1
Baskin, R.J.2
Cole, D.G.3
Wedaman, K.P.4
Saxton, W.M.5
Scholey, J.M.6
-
34
-
-
0033789351
-
Dynactin increases the processivity of the cytoplasmic dynein motor
-
King, S.J., and T.A. Schroer. 2000. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2:20-24. http://dx.doi.org/10.1038/71338
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 20-24
-
-
King, S.J.1
Schroer, T.A.2
-
35
-
-
84857788913
-
Chromosome- and spindle-polederived signals generate an intrinsic code for spindle position and orientation
-
Kiyomitsu, T., and I.M. Cheeseman. 2012. Chromosome- and spindle-polederived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14:311-317. http://dx.doi.org/10.1038/ncb2440
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 311-317
-
-
Kiyomitsu, T.1
Cheeseman, I.M.2
-
36
-
-
77951299152
-
Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function
-
Kwiatkowski, N., N. Jelluma, P. Filippakopoulos, M. Soundararajan, M.S. Manak, M. Kwon, H.G. Choi, T. Sim, Q.L. Deveraux, S. Rottmann, et al. 2010. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6:359-368. http://dx.doi.org/10.1038/nchembio.345
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 359-368
-
-
Kwiatkowski, N.1
Jelluma, N.2
Filippakopoulos, P.3
Soundararajan, M.4
Manak, M.S.5
Kwon, M.6
Choi, H.G.7
Sim, T.8
Deveraux, Q.L.9
Rottmann, S.10
-
37
-
-
33745753850
-
A dynein loading zone for retrograde endosome motility at microtubule plus-ends
-
Lenz, J.H., I. Schuchardt, A. Straube, and G. Steinberg. 2006. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J. 25:2275-2286. http://dx.doi.org/10.1038/sj.emboj.7601119
-
(2006)
EMBO J.
, vol.25
, pp. 2275-2286
-
-
Lenz, J.H.1
Schuchardt, I.2
Straube, A.3
Steinberg, G.4
-
38
-
-
22144491144
-
NudEL targets dynein to microtubule ends through LIS1
-
Li, J., W.L. Lee, and J.A. Cooper. 2005. NudEL targets dynein to microtubule ends through LIS1. Nat. Cell Biol. 7:686-690. http://dx.doi.org/10.1038/ncb1273
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 686-690
-
-
Li, J.1
Lee, W.L.2
Cooper, J.A.3
-
39
-
-
34347369839
-
Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase
-
Liang, Y., W. Yu, Y. Li, L. Yu, Q. Zhang, F. Wang, Z. Yang, J. Du, Q. Huang, X. Yao, and X. Zhu. 2007. Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol. Biol. Cell. 18:2656- 2666. http://dx.doi.org/10.1091/mbc.E06-04-0345
-
(2007)
Mol. Biol. Cell.
, vol.18
-
-
Liang, Y.1
Yu, W.2
Li, Y.3
Yu, L.4
Zhang, Q.5
Wang, F.6
Yang, Z.7
Du, J.8
Huang, Q.9
Yao, X.10
Zhu, X.11
-
40
-
-
77951701022
-
LIS1 and NudE induce a persistent dynein force-producing state
-
McKenney, R.J., M. Vershinin, A. Kunwar, R.B. Vallee, and S.P. Gross. 2010. LIS1 and NudE induce a persistent dynein force-producing state. Cell. 141:304-314. http://dx.doi.org/10.1016/j.cell.2010.02.035
-
(2010)
Cell
, vol.141
, pp. 304-314
-
-
McKenney, R.J.1
Vershinin, M.2
Kunwar, A.3
Vallee, R.B.4
Gross, S.P.5
-
41
-
-
80155168100
-
Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin
-
McKenney, R.J., S.J. Weil, J. Scherer, and R.B. Vallee. 2011. Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J. Biol. Chem. 286:39615-39622. http://dx.doi.org/10.1074/jbc.M111.289017
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 39615-39622
-
-
McKenney, R.J.1
Weil, S.J.2
Scherer, J.3
Vallee, R.B.4
-
42
-
-
34547118366
-
Mechanism of dynamitin-mediated disruption of dynactin
-
Melkonian, K.A., K.C. Maier, J.E. Godfrey, M. Rodgers, and T.A. Schroer. 2007. Mechanism of dynamitin-mediated disruption of dynactin. J. Biol. Chem. 282:19355-19364. http://dx.doi.org/10.1074/jbc.M700003200
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 19355-19364
-
-
Melkonian, K.A.1
Maier, K.C.2
Godfrey, J.E.3
Rodgers, M.4
Schroer, T.A.5
-
43
-
-
0037115599
-
Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells
-
Mikami, A., S.H. Tynan, T. Hama, K. Luby-Phelps, T. Saito, J.E. Crandall, J.C. Besharse, and R.B. Vallee. 2002. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J. Cell Sci. 115:4801-4808. http://dx.doi.org/10.1242/jcs.00168
-
(2002)
J. Cell Sci.
, vol.115
, pp. 4801-4808
-
-
Mikami, A.1
Tynan, S.H.2
Hama, T.3
Luby-Phelps, K.4
Saito, T.5
Crandall, J.E.6
Besharse, J.C.7
Vallee, R.B.8
-
44
-
-
19644392512
-
Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles
-
Mitchison, T.J., P. Maddox, J. Gaetz, A. Groen, M. Shirasu, A. Desai, E.D. Salmon, and T.M. Kapoor. 2005. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol. Biol. Cell. 16:3064-3076. http://dx.doi.org/10.1091/mbc.E05-02-0174
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 3064-3076
-
-
Mitchison, T.J.1
Maddox, P.2
Gaetz, J.3
Groen, A.4
Shirasu, M.5
Desai, A.6
Salmon, E.D.7
Kapoor, T.M.8
-
45
-
-
0035104723
-
Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids
-
Muresan, V., M.C. Stankewich, W. Steffen, J.S. Morrow, E.L. Holzbaur, and B.J. Schnapp. 2001. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell. 7:173-183. http://dx.doi.org/10.1016/S1097-2765(01)00165-4
-
(2001)
Mol. Cell.
, vol.7
, pp. 173-183
-
-
Muresan, V.1
Stankewich, M.C.2
Steffen, W.3
Morrow, J.S.4
Holzbaur, E.L.5
Schnapp, B.J.6
-
46
-
-
84864539127
-
Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin
-
Nyarko, A., Y. Song, and E. Barbar. 2012. Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J. Biol. Chem. 287:24884-24893. http://dx.doi.org/10.1074/jbc.M112.376038
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 24884-24893
-
-
Nyarko, A.1
Song, Y.2
Barbar, E.3
-
47
-
-
67449164805
-
Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps
-
Palmer, K.J., H. Hughes, and D.J. Stephens. 2009. Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. Mol. Biol. Cell. 20:2885-2899. http://dx.doi.org/10.1091/mbc.E08-12-1160
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 2885-2899
-
-
Palmer, K.J.1
Hughes, H.2
Stephens, D.J.3
-
48
-
-
0025304455
-
Cytoplasmic dynein is localized to kinetochores during mitosis
-
Pfarr, C.M., M. Coue, P.M. Grissom, T.S. Hays, M.E. Porter, and J.R. McIntosh. 1990. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature. 345:263-265. http://dx.doi.org/10.1038/345263a0
-
(1990)
Nature.
, vol.345
, pp. 263-265
-
-
Pfarr, C.M.1
Coue, M.2
Grissom, P.M.3
Hays, T.S.4
Porter, M.E.5
McIntosh, J.R.6
-
49
-
-
33645778345
-
Genetic analysis of the cytoplasmic dynein subunit families
-
Pfister, K.K., P.R. Shah, H. Hummerich, A. Russ, J. Cotton, A.A. Annuar, S.M. King, and E.M. Fisher. 2006. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2:e1. http://dx.doi.org/10.1371/journal.pgen.0020001
-
(2006)
PLoS Genet.
, vol.2
-
-
Pfister, K.K.1
Shah, P.R.2
Hummerich, H.3
Russ, A.4
Cotton, J.5
Annuar, A.A.6
King, S.M.7
Fisher, E.M.8
-
50
-
-
42949095911
-
BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals
-
Poser, I., M. Sarov, J.R. Hutchins, J.K. Hériché, Y. Toyoda, A. Pozniakovsky, D. Weigl, A. Nitzsche, B. Hegemann, A.W. Bird, et al. 2008. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods. 5:409-415. http://dx.doi.org/10.1038/nmeth.1199
-
(2008)
Nat. Methods
, vol.5
, pp. 409-415
-
-
Poser, I.1
Sarov, M.2
Hutchins, J.R.3
Hériché, J.K.4
Toyoda, Y.5
Pozniakovsky, A.6
Weigl, D.7
Nitzsche, A.8
Hegemann, B.9
Bird, A.W.10
-
51
-
-
0032701651
-
Dynactin is required for microtubule anchoring at centrosomes
-
Quintyne, N.J., S.R. Gill, D.M. Eckley, C.L. Crego, D.A. Compton, and T.A. Schroer. 1999. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147:321-334. http://dx.doi.org/10.1083/jcb.147.2.321
-
(1999)
J. Cell Biol.
, vol.147
, pp. 321-334
-
-
Quintyne, N.J.1
Gill, S.R.2
Eckley, D.M.3
Crego, C.L.4
Compton, D.A.5
Schroer, T.A.6
-
52
-
-
69649106682
-
RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment
-
Raaijmakers, J.A., M.E. Tanenbaum, A.F. Maia, and R.H. Medema. 2009. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J. Cell Sci. 122:2436-2445. http://dx.doi.org/10.1242/jcs.051912
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2436-2445
-
-
Raaijmakers, J.A.1
Tanenbaum, M.E.2
Maia, A.F.3
Medema, R.H.4
-
53
-
-
84868537751
-
Nuclear envelopeassociated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation
-
Raaijmakers, J.A., R.G. van Heesbeen, J.L. Meaders, E.F. Geers, B. Fernandez-Garcia, R.H. Medema, and M.E. Tanenbaum. 2012. Nuclear envelopeassociated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 31:4179-4190. http://dx.doi.org/10.1038/emboj.2012.272
-
(2012)
EMBO J.
, vol.31
, pp. 4179-4190
-
-
Raaijmakers, J.A.1
van Heesbeen, R.G.2
Meaders, J.L.3
Geers, E.F.4
Fernandez-Garcia, B.5
Medema, R.H.6
Tanenbaum, M.E.7
-
54
-
-
0033538842
-
Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila
-
Robinson, J.T., E.J. Wojcik, M.A. Sanders, M. McGrail, and T.S. Hays. 1999. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146:597-608. http://dx.doi.org/10.1083/jcb.146.3.597
-
(1999)
J. Cell Biol.
, vol.146
, pp. 597-608
-
-
Robinson, J.T.1
Wojcik, E.J.2
Sanders, M.A.3
McGrail, M.4
Hays, T.S.5
-
55
-
-
0037059618
-
Cytoplasmic dynein as a facilitator of nuclear envelope breakdown
-
Salina, D., K. Bodoor, D.M. Eckley, T.A. Schroer, J.B. Rattner, and B. Burke. 2002. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell. 108:97-107. http://dx.doi.org/10.1016/S0092-8674(01)00628-6
-
(2002)
Cell.
, vol.108
, pp. 97-107
-
-
Salina, D.1
Bodoor, K.2
Eckley, D.M.3
Schroer, T.A.4
Rattner, J.B.5
Burke, B.6
-
56
-
-
0026739078
-
Mitotic spindle organization by a plus-end-directed microtubule motor
-
Sawin, K.E., K. LeGuellec, M. Philippe, and T.J. Mitchison. 1992. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature. 359:540-543. http://dx.doi.org/10.1038/359540a0
-
(1992)
Nature.
, vol.359
, pp. 540-543
-
-
Sawin, K.E.1
LeGuellec, K.2
Philippe, M.3
Mitchison, T.J.4
-
57
-
-
77958457209
-
Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores
-
Schmidt, J.C., T. Kiyomitsu, T. Hori, C.B. Backer, T. Fukagawa, and I.M. Cheeseman. 2010. Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores. J. Cell Biol. 191:269-280. http://dx.doi.org/10.1083/jcb.201006129
-
(2010)
J. Cell Biol.
, vol.191
, pp. 269-280
-
-
Schmidt, J.C.1
Kiyomitsu, T.2
Hori, T.3
Backer, C.B.4
Fukagawa, T.5
Cheeseman, I.M.6
-
58
-
-
4444249640
-
Dynactin
-
Schroer, T.A. 2004. Dynactin. Annu. Rev. Cell Dev. Biol. 20:759-779. http://dx.doi.org/10.1146/annurev.cellbio.20.012103.094623
-
(2004)
Annu. Rev. Cell Dev. Biol.
, vol.20
, pp. 759-779
-
-
Schroer, T.A.1
-
59
-
-
0025789647
-
Two activators of microtubule-based vesicle transport
-
Schroer, T.A., and M.P. Sheetz. 1991. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115:1309-1318. http://dx.doi.org/10.1083/jcb.115.5.1309
-
(1991)
J. Cell Biol.
, vol.115
, pp. 1309-1318
-
-
Schroer, T.A.1
Sheetz, M.P.2
-
60
-
-
0033625872
-
Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos
-
Sharp, D.J., G.C. Rogers, and J.M. Scholey. 2000. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2:922-930. http://dx.doi.org/10.1038/35046574
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 922-930
-
-
Sharp, D.J.1
Rogers, G.C.2
Scholey, J.M.3
-
61
-
-
28144455335
-
Solution structure of isoform 1 of Roadblock/LC7, a light chain in the dynein complex
-
Song, J., R.C. Tyler, M.S. Lee, E.M. Tyler, and J.L. Markley. 2005. Solution structure of isoform 1 of Roadblock/LC7, a light chain in the dynein complex. J. Mol. Biol. 354:1043-1051. http://dx.doi.org/10.1016/j.jmb.2005.10.017
-
(2005)
J. Mol. Biol.
, vol.354
, pp. 1043-1051
-
-
Song, J.1
Tyler, R.C.2
Lee, M.S.3
Tyler, E.M.4
Markley, J.L.5
-
62
-
-
77951753826
-
Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry
-
Splinter, D., M.E. Tanenbaum, A. Lindqvist, D. Jaarsma, A. Flotho, K.L. Yu, I. Grigoriev, D. Engelsma, E.D. Haasdijk, N. Keijzer, et al. 2010. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8:e1000350. http://dx.doi.org/10.1371/journal.pbio.1000350
-
(2010)
PLoS Biol.
, vol.8
-
-
Splinter, D.1
Tanenbaum, M.E.2
Lindqvist, A.3
Jaarsma, D.4
Flotho, A.5
Yu, K.L.6
Grigoriev, I.7
Engelsma, D.8
Haasdijk, E.D.9
Keijzer, N.10
-
63
-
-
84868250529
-
BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures
-
Splinter, D., D.S. Razafsky, M.A. Schlager, A. Serra-Marques, I. Grigoriev, J. Demmers, N. Keijzer, K. Jiang, I. Poser, A.A. Hyman, et al. 2012. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol. Biol. Cell. 23:4226-4241. http://dx.doi.org/10.1091/mbc.E12-03-0210
-
(2012)
Mol. Biol. Cell.
, vol.23
, pp. 4226-4241
-
-
Splinter, D.1
Razafsky, D.S.2
Schlager, M.A.3
Serra-Marques, A.4
Grigoriev, I.5
Demmers, J.6
Keijzer, N.7
Jiang, K.8
Poser, I.9
Hyman, A.A.10
-
64
-
-
0031852650
-
ZW10 helps recruit dynactin and dynein to the kinetochore
-
Starr, D.A., B.C. Williams, T.S. Hays, and M.L. Goldberg. 1998. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142:763-774. http://dx.doi.org/10.1083/jcb.142.3.763
-
(1998)
J. Cell Biol.
, vol.142
, pp. 763-774
-
-
Starr, D.A.1
Williams, B.C.2
Hays, T.S.3
Goldberg, M.L.4
-
65
-
-
34547958546
-
NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores
-
Stehman, S.A., Y. Chen, R.J. McKenney, and R.B. Vallee. 2007. NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J. Cell Biol. 178:583-594. http://dx.doi.org/10.1083/jcb.200610112
-
(2007)
J. Cell Biol.
, vol.178
, pp. 583-594
-
-
Stehman, S.A.1
Chen, Y.2
McKenney, R.J.3
Vallee, R.B.4
-
66
-
-
0025320820
-
Localization of cytoplasmic dynein to mitotic spindles and kinetochores
-
Steuer, E.R., L. Wordeman, T.A. Schroer, and M.P. Sheetz. 1990. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature. 345: 266-268. http://dx.doi.org/10.1038/345266a0
-
(1990)
Nature.
, vol.345
, pp. 266-268
-
-
Steuer, E.R.1
Wordeman, L.2
Schroer, T.A.3
Sheetz, M.P.4
-
67
-
-
79960988207
-
Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest
-
Stevens, D., R. Gassmann, K. Oegema, and A. Desai. 2011. Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS ONE. 6:e22969. http://dx.doi.org/10.1371/journal.pone.0022969
-
(2011)
PLoS ONE.
, vol.6
-
-
Stevens, D.1
Gassmann, R.2
Oegema, K.3
Desai, A.4
-
68
-
-
0037031816
-
The roadblock light chain binds a novel region of the cytoplasmic Dynein intermediate chain
-
Susalka, S.J., K. Nikulina, M.W. Salata, P.S. Vaughan, S.M. King, K.T. Vaughan, and K.K. Pfister. 2002. The roadblock light chain binds a novel region of the cytoplasmic Dynein intermediate chain. J. Biol. Chem. 277:32939-32946. http://dx.doi.org/10.1074/jbc.M205510200
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 32939-32946
-
-
Susalka, S.J.1
Nikulina, K.2
Salata, M.W.3
Vaughan, P.S.4
King, S.M.5
Vaughan, K.T.6
Pfister, K.K.7
-
69
-
-
0033603239
-
Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1
-
Tai, A.W., J.Z. Chuang, C. Bode, U. Wolfrum, and C.H. Sung. 1999. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell. 97:877-887. http://dx.doi.org/10.1016/S0092-8674(00)80800-4
-
(1999)
Cell.
, vol.97
, pp. 877-887
-
-
Tai, A.W.1
Chuang, J.Z.2
Bode, C.3
Wolfrum, U.4
Sung, C.H.5
-
70
-
-
0037128930
-
Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function
-
Tai, C.Y., D.L. Dujardin, N.E. Faulkner, and R.B. Vallee. 2002. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156:959-968. http://dx.doi.org/10.1083/jcb.200109046
-
(2002)
J. Cell Biol.
, vol.156
, pp. 959-968
-
-
Tai, C.Y.1
Dujardin, D.L.2
Faulkner, N.E.3
Vallee, R.B.4
-
71
-
-
58049215343
-
Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly
-
Tanenbaum, M.E., L. Macurek, N. Galjart, and R.H. Medema. 2008. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J. 27:3235-3245. http://dx.doi.org/10.1038/emboj.2008.242
-
(2008)
EMBO J.
, vol.27
, pp. 3235-3245
-
-
Tanenbaum, M.E.1
Macurek, L.2
Galjart, N.3
Medema, R.H.4
-
72
-
-
70350575316
-
Kif15 cooperates with eg5 to promote bipolar spindle assembly
-
Tanenbaum, M.E., L. Macurek, A. Janssen, E.F. Geers, M. Alvarez-Fernández, and R.H. Medema. 2009. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 19:1703-1711. http://dx.doi.org/10.1016/j.cub.2009.08.027
-
(2009)
Curr. Biol.
, vol.19
, pp. 1703-1711
-
-
Tanenbaum, M.E.1
Macurek, L.2
Janssen, A.3
Geers, E.F.4
Alvarez-Fernández, M.5
Medema, R.H.6
-
73
-
-
77956217800
-
Dynein at the nuclear envelope
-
Tanenbaum, M.E., A. Akhmanova, and R.H. Medema. 2010. Dynein at the nuclear envelope. EMBO Rep. 11:649. http://dx.doi.org/10.1038/embor.2010.127
-
(2010)
EMBO Rep.
, vol.11
, pp. 649
-
-
Tanenbaum, M.E.1
Akhmanova, A.2
Medema, R.H.3
-
74
-
-
0034693225
-
Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin
-
Tynan, S.H., A. Purohit, S.J. Doxsey, and R.B. Vallee. 2000. Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin. J. Biol. Chem. 275:32763-32768. http://dx.doi.org/10.1074/jbc.M001536200
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 32763-32768
-
-
Tynan, S.H.1
Purohit, A.2
Doxsey, S.J.3
Vallee, R.B.4
-
75
-
-
0027420391
-
Cytoplasmic dynein plays a role in mammalian mitotic spindle formation
-
Vaisberg, E.A., M.P. Koonce, and J.R. McIntosh. 1993. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123: 849-858. http://dx.doi.org/10.1083/jcb.123.4.849
-
(1993)
J. Cell Biol.
, vol.123
, pp. 849-858
-
-
Vaisberg, E.A.1
Koonce, M.P.2
McIntosh, J.R.3
-
76
-
-
70350575315
-
The role of Hklp2 in the stabilization and maintenance of spindle bipolarity
-
Vanneste, D., M. Takagi, N. Imamoto, and I. Vernos. 2009. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr. Biol. 19:1712-1717. http://dx.doi.org/10.1016/j.cub.2009.09.019
-
(2009)
Curr. Biol.
, vol.19
, pp. 1712-1717
-
-
Vanneste, D.1
Takagi, M.2
Imamoto, N.3
Vernos, I.4
-
77
-
-
52249122632
-
Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment
-
Varma, D., P. Monzo, S.A. Stehman, and R.B. Vallee. 2008. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. J. Cell Biol. 182:1045-1054. http://dx.doi.org/10.1083/jcb.200710106
-
(2008)
J. Cell Biol.
, vol.182
, pp. 1045-1054
-
-
Varma, D.1
Monzo, P.2
Stehman, S.A.3
Vallee, R.B.4
-
78
-
-
33746094659
-
Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1
-
Vassilev, L.T., C. Tovar, S. Chen, D. Knezevic, X. Zhao, H. Sun, D.C. Heimbrook, and L. Chen. 2006. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. USA. 103:10660-10665. http://dx.doi.org/10.1073/pnas.0600447103
-
(2006)
Proc. Natl. Acad. Sci. USA.
, vol.103
, pp. 10660-10665
-
-
Vassilev, L.T.1
Tovar, C.2
Chen, S.3
Knezevic, D.4
Zhao, X.5
Sun, H.6
Heimbrook, D.C.7
Chen, L.8
-
79
-
-
0029563632
-
Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued
-
Vaughan, K.T., and R.B. Vallee. 1995. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131:1507-1516. http://dx.doi.org/10.1083/jcb.131.6.1507
-
(1995)
J. Cell Biol.
, vol.131
, pp. 1507-1516
-
-
Vaughan, K.T.1
Vallee, R.B.2
-
80
-
-
0026071835
-
Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein
-
Verde, F., J.M. Berrez, C. Antony, and E. Karsenti. 1991. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112:1177-1187. http://dx.doi.org/10.1083/jcb.112.6.1177
-
(1991)
J. Cell Biol.
, vol.112
, pp. 1177-1187
-
-
Verde, F.1
Berrez, J.M.2
Antony, C.3
Karsenti, E.4
-
81
-
-
34250833558
-
Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes
-
Vergnolle, M.A., and S.S. Taylor. 2007. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr. Biol. 17:1173-1179. http://dx.doi.org/10.1016/j.cub.2007.05.077
-
(2007)
Curr. Biol.
, vol.17
, pp. 1173-1179
-
-
Vergnolle, M.A.1
Taylor, S.S.2
-
82
-
-
0028986631
-
The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1)
-
Waterman-Storer, C.M., S. Karki, and E.L. Holzbaur. 1995. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl. Acad. Sci. USA. 92:1634-1638. http://dx.doi.org/10.1073/pnas.92.5.1634
-
(1995)
Proc. Natl. Acad. Sci. USA.
, vol.92
, pp. 1634-1638
-
-
Waterman-Storer, C.M.1
Karki, S.2
Holzbaur, E.L.3
-
83
-
-
58149311091
-
Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis
-
Whyte, J., J.R. Bader, S.B. Tauhata, M. Raycroft, J. Hornick, K.K. Pfister, W.S. Lane, G.K. Chan, E.H. Hinchcliffe, P.S. Vaughan, and K.T. Vaughan. 2008. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J. Cell Biol. 183:819-834. http://dx.doi.org/10.1083/jcb.200804114
-
(2008)
J. Cell Biol.
, vol.183
, pp. 819-834
-
-
Whyte, J.1
Bader, J.R.2
Tauhata, S.B.3
Raycroft, M.4
Hornick, J.5
Pfister, K.K.6
Lane, W.S.7
Chan, G.K.8
Hinchcliffe, E.H.9
Vaughan, P.S.10
Vaughan, K.T.11
-
84
-
-
0032622374
-
Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes
-
Wittmann, T., and T. Hyman. 1999. Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. Methods Cell Biol. 61:137-143. http://dx.doi.org/10.1016/S0091-679X(08)61978-0
-
(1999)
Methods Cell Biol.
, vol.61
, pp. 137-143
-
-
Wittmann, T.1
Hyman, T.2
-
85
-
-
0035736325
-
Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein
-
Wojcik, E., R. Basto, M. Serr, F. Scaërou, R. Karess, and T. Hays. 2001. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat. Cell Biol. 3:1001-1007. http://dx.doi.org/10.1038/ncb1101-1001
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 1001-1007
-
-
Wojcik, E.1
Basto, R.2
Serr, M.3
Scaërou, F.4
Karess, R.5
Hays, T.6
-
86
-
-
53549119395
-
LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein
-
Yamada, M., S. Toba, Y. Yoshida, K. Haratani, D. Mori, Y. Yano, Y. Mimori-Kiyosue, T. Nakamura, K. Itoh, S. Fushiki, et al. 2008. LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J. 27:2471-2483. http://dx.doi.org/10.1038/emboj.2008.182
-
(2008)
EMBO J.
, vol.27
, pp. 2471-2483
-
-
Yamada, M.1
Toba, S.2
Yoshida, Y.3
Haratani, K.4
Mori, D.5
Yano, Y.6
Mimori-Kiyosue, Y.7
Nakamura, T.8
Itoh, K.9
Fushiki, S.10
-
87
-
-
0036231905
-
Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans
-
Zhang, J., G. Han, and X. Xiang. 2002. Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol. Microbiol. 44:381-392. http://dx.doi.org/10.1046/j.1365-2958.2002.02900.x
-
(2002)
Mol. Microbiol.
, vol.44
, pp. 381-392
-
-
Zhang, J.1
Han, G.2
Xiang, X.3
-
88
-
-
79551696978
-
The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein
-
Zylkiewicz, E., M. Kijanska, W.C. Choi, U. Derewenda, Z.S. Derewenda, and P.T. Stukenberg. 2011. The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J. Cell Biol. 192:433-445. http://dx.doi.org/10.1083/jcb.201011142
-
(2011)
J. Cell Biol.
, vol.192
, pp. 433-445
-
-
Zylkiewicz, E.1
Kijanska, M.2
Choi, W.C.3
Derewenda, U.4
Derewenda, Z.S.5
Stukenberg, P.T.6
|