메뉴 건너뛰기




Volumn 4, Issue 3, 2013, Pages 233-246

Making ends meet: Coordination between RNA 3′-end processing and transcription initiation

Author keywords

[No Author keywords available]

Indexed keywords

GENERAL TRANSCRIPTION FACTOR; MESSENGER RNA; RNA POLYMERASE II; SMALL NUCLEAR RNA;

EID: 84876441383     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.1156     Document Type: Review
Times cited : (18)

References (144)
  • 1
    • 84857423235 scopus 로고    scopus 로고
    • Conservation between the RNA polymerase I, II, and III transcription initiation machineries.
    • Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012, 45:439-446.
    • (2012) Mol Cell , vol.45 , pp. 439-446
    • Vannini, A.1    Cramer, P.2
  • 2
    • 79960716754 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing.
    • Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 2011, 12: 483-492.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 483-492
    • Haag, J.R.1    Pikaard, C.S.2
  • 3
    • 79955475464 scopus 로고    scopus 로고
    • Unravelling the means to an end: RNA polymerase II transcription termination.
    • Kuehner JN, Pearson EL, Moore C. Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 2011, 12: 283-294.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 283-294
    • Kuehner, J.N.1    Pearson, E.L.2    Moore, C.3
  • 4
    • 80052447253 scopus 로고    scopus 로고
    • Ending the message: poly(A) signals then and now.
    • Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes Dev 2011, 25:1770-1782.
    • (2011) Genes Dev , vol.25 , pp. 1770-1782
    • Proudfoot, N.J.1
  • 5
    • 66149187105 scopus 로고    scopus 로고
    • Transcription termination by nuclear RNA polymerases.
    • Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009, 23:1247-1269.
    • (2009) Genes Dev , vol.23 , pp. 1247-1269
    • Richard, P.1    Manley, J.L.2
  • 6
    • 84867154009 scopus 로고    scopus 로고
    • Promoter-proximal polyadenylation sites reduce transcription activity.
    • Andersen PK, Lykke-Andersen S, Jensen TH. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev 2012, 26:2169-2179.
    • (2012) Genes Dev , vol.26 , pp. 2169-2179
    • Andersen, P.K.1    Lykke-Andersen, S.2    Jensen, T.H.3
  • 7
    • 29144472375 scopus 로고    scopus 로고
    • A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping.
    • Ansari A, Hampsey M. A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 2005, 19:2969-2978.
    • (2005) Genes Dev , vol.19 , pp. 2969-2978
    • Ansari, A.1    Hampsey, M.2
  • 10
    • 72749098124 scopus 로고    scopus 로고
    • Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex.
    • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 2009, 23:2610-2624.
    • (2009) Genes Dev , vol.23 , pp. 2610-2624
    • Tan-Wong, S.M.1    Wijayatilake, H.D.2    Proudfoot, N.J.3
  • 12
    • 37349099448 scopus 로고    scopus 로고
    • Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation.
    • Yao J, Ardehali MB, Fecko CJ, Webb WW, Lis JT. Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation. Mol Cell 2007, 28:978-990.
    • (2007) Mol Cell , vol.28 , pp. 978-990
    • Yao, J.1    Ardehali, M.B.2    Fecko, C.J.3    Webb, W.W.4    Lis, J.T.5
  • 13
    • 77954918638 scopus 로고    scopus 로고
    • Structure and basal transcription complex of RNA polymerase II core promoters in the mammalian genome: an overview.
    • Baumann M, Pontiller J, Ernst W. Structure and basal transcription complex of RNA polymerase II core promoters in the mammalian genome: an overview. Mol Biotechnol 2010, 45:241-247.
    • (2010) Mol Biotechnol , vol.45 , pp. 241-247
    • Baumann, M.1    Pontiller, J.2    Ernst, W.3
  • 15
    • 77958111633 scopus 로고    scopus 로고
    • The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation.
    • Malik S, Roeder RG. The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010, 11:761-772.
    • (2010) Nat Rev Genet , vol.11 , pp. 761-772
    • Malik, S.1    Roeder, R.G.2
  • 16
    • 1242273889 scopus 로고    scopus 로고
    • Structure and function of RNA polymerase II.
    • Cramer P. Structure and function of RNA polymerase II. Adv Protein Chem 2004, 67:1-42.
    • (2004) Adv Protein Chem , vol.67 , pp. 1-42
    • Cramer, P.1
  • 17
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo.
    • Fuda NJ, Ardehali MB, Lis JT. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461:186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1    Ardehali, M.B.2    Lis, J.T.3
  • 18
    • 66049096618 scopus 로고    scopus 로고
    • The basal initiation machinery: beyond the general transcription factors.
    • Sikorski TW, Buratowski S. The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 2009, 21:344-351.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 344-351
    • Sikorski, T.W.1    Buratowski, S.2
  • 19
    • 0034626731 scopus 로고    scopus 로고
    • A transcription reinitiation intermediate that is stabilized by activator.
    • Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000, 408:225-229.
    • (2000) Nature , vol.408 , pp. 225-229
    • Yudkovsky, N.1    Ranish, J.A.2    Hahn, S.3
  • 21
    • 1542290655 scopus 로고    scopus 로고
    • Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes.
    • Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 2004, 23:354-364.
    • (2004) EMBO J , vol.23 , pp. 354-364
    • Kim, M.1    Ahn, S.H.2    Krogan, N.J.3    Greenblatt, J.F.4    Buratowski, S.5
  • 22
    • 22344443368 scopus 로고    scopus 로고
    • CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11.
    • Zhang Z, Fu J, Gilmour DS. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev 2005, 19:1572-1580.
    • (2005) Genes Dev , vol.19 , pp. 1572-1580
    • Zhang, Z.1    Fu, J.2    Gilmour, D.S.3
  • 23
    • 29544441415 scopus 로고    scopus 로고
    • Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript.
    • Zhang Z, Gilmour DS. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 2006, 21:65-74.
    • (2006) Mol Cell , vol.21 , pp. 65-74
    • Zhang, Z.1    Gilmour, D.S.2
  • 24
    • 9644308046 scopus 로고    scopus 로고
    • Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites.
    • West S, Gromak N, Proudfoot NJ. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004, 432:522-525.
    • (2004) Nature , vol.432 , pp. 522-525
    • West, S.1    Gromak, N.2    Proudfoot, N.J.3
  • 26
    • 33646556092 scopus 로고    scopus 로고
    • Pause sites promote transcriptional termination of mammalian RNA polymerase II.
    • Gromak N, West S, Proudfoot NJ. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 2006, 26:3986-3996.
    • (2006) Mol Cell Biol , vol.26 , pp. 3986-3996
    • Gromak, N.1    West, S.2    Proudfoot, N.J.3
  • 27
    • 79959345878 scopus 로고    scopus 로고
    • Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination.
    • Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011, 42:794-805.
    • (2011) Mol Cell , vol.42 , pp. 794-805
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2    Gromak, N.3
  • 29
    • 2942594807 scopus 로고    scopus 로고
    • The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain.
    • Park NJ, Tsao DC, Martinson HG. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol Cell Biol 2004, 24:4092-4103.
    • (2004) Mol Cell Biol , vol.24 , pp. 4092-4103
    • Park, N.J.1    Tsao, D.C.2    Martinson, H.G.3
  • 30
    • 34447125198 scopus 로고    scopus 로고
    • The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase.
    • Nag A, Narsinh K, Martinson HG. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 2007, 14:662-669.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 662-669
    • Nag, A.1    Narsinh, K.2    Martinson, H.G.3
  • 31
    • 75649136970 scopus 로고    scopus 로고
    • Poly(A) signal-dependent degradation of unprocessed nascent transcripts accompanies poly(A) signal-dependent transcriptional pausing in vitro.
    • Kazerouninia A, Ngo B, Martinson HG. Poly(A) signal-dependent degradation of unprocessed nascent transcripts accompanies poly(A) signal-dependent transcriptional pausing in vitro. RNA 2010, 16:197-210.
    • (2010) RNA , vol.16 , pp. 197-210
    • Kazerouninia, A.1    Ngo, B.2    Martinson, H.G.3
  • 32
    • 33645844251 scopus 로고    scopus 로고
    • The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model.
    • Luo W, Johnson AW, Bentley DL. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 2006, 20:954-965.
    • (2006) Genes Dev , vol.20 , pp. 954-965
    • Luo, W.1    Johnson, A.W.2    Bentley, D.L.3
  • 33
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle.
    • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell 2009, 36:541-546.
    • (2009) Mol Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 34
    • 84862493306 scopus 로고    scopus 로고
    • Updating the RNA polymerase CTD code: adding gene-specific layers.
    • Egloff S, Dienstbier M, Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012, 28:333-341.
    • (2012) Trends Genet , vol.28 , pp. 333-341
    • Egloff, S.1    Dienstbier, M.2    Murphy, S.3
  • 35
    • 84872405841 scopus 로고    scopus 로고
    • Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    • Heidemann M, Hintermair C, Voss K, Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 2013, 1829:55-62.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 55-62
    • Heidemann, M.1    Hintermair, C.2    Voss, K.3    Eick, D.4
  • 36
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing.
    • Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012, 26:2119-2137.
    • (2012) Genes Dev , vol.26 , pp. 2119-2137
    • Hsin, J.P.1    Manley, J.L.2
  • 40
    • 77954224687 scopus 로고    scopus 로고
    • The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain.
    • Egloff S, Szczepaniak SA, Dienstbier M, Taylor A, Knight S, Murphy S. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J Biol Chem 2010, 285:20564-20569.
    • (2010) J Biol Chem , vol.285 , pp. 20564-20569
    • Egloff, S.1    Szczepaniak, S.A.2    Dienstbier, M.3    Taylor, A.4    Knight, S.5    Murphy, S.6
  • 41
    • 84855880038 scopus 로고    scopus 로고
    • Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes.
    • Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 2012, 45:111-122.
    • (2012) Mol Cell , vol.45 , pp. 111-122
    • Egloff, S.1    Zaborowska, J.2    Laitem, C.3    Kiss, T.4    Murphy, S.5
  • 42
  • 43
    • 80555125095 scopus 로고    scopus 로고
    • RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing.
    • Hsin JP, Sheth A, Manley JL. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 2011, 334:683-686.
    • (2011) Science , vol.334 , pp. 683-686
    • Hsin, J.P.1    Sheth, A.2    Manley, J.L.3
  • 46
    • 84862229469 scopus 로고    scopus 로고
    • RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.
    • Anamika K, Gyenis A, Poidevin L, Poch O, Tora L. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. PLoS One 2012, 7:e38769.
    • (2012) PLoS One , vol.7
    • Anamika, K.1    Gyenis, A.2    Poidevin, L.3    Poch, O.4    Tora, L.5
  • 47
    • 84863229897 scopus 로고    scopus 로고
    • Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination.
    • Zhang DW, Mosley AL, Ramisetty SR, Rodriguez-Molina JB, Washburn MP, Ansari AZ. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 2012, 287:8541-8551.
    • (2012) J Biol Chem , vol.287 , pp. 8541-8551
    • Zhang, D.W.1    Mosley, A.L.2    Ramisetty, S.R.3    Rodriguez-Molina, J.B.4    Washburn, M.P.5    Ansari, A.Z.6
  • 48
    • 84856273602 scopus 로고    scopus 로고
    • A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes.
    • Bataille AR, Jeronimo C, Jacques PE, Laramee L, Fortin ME, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 2012, 45:158-170.
    • (2012) Mol Cell , vol.45 , pp. 158-170
    • Bataille, A.R.1    Jeronimo, C.2    Jacques, P.E.3    Laramee, L.4    Fortin, M.E.5    Forest, A.6    Bergeron, M.7    Hanes, S.D.8    Robert, F.9
  • 49
    • 37849036555 scopus 로고    scopus 로고
    • RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes.
    • Glover-Cutter K, Kim S, Espinosa J, Bentley DL. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 2008, 15:71-78.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 71-78
    • Glover-Cutter, K.1    Kim, S.2    Espinosa, J.3    Bentley, D.L.4
  • 50
    • 84866176227 scopus 로고    scopus 로고
    • Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes.
    • Fuda NJ, Buckley MS, Wei W, Core LJ, Waters CT, Reinberg D, Lis JT. Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes. Mol Cell Biol 2012, 32:3428-3437.
    • (2012) Mol Cell Biol , vol.32 , pp. 3428-3437
    • Fuda, N.J.1    Buckley, M.S.2    Wei, W.3    Core, L.J.4    Waters, C.T.5    Reinberg, D.6    Lis, J.T.7
  • 52
    • 0032167935 scopus 로고    scopus 로고
    • Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron.
    • Bauren G, Belikov S, Wieslander L. Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev 1998, 12:2759-2769.
    • (1998) Genes Dev , vol.12 , pp. 2759-2769
    • Bauren, G.1    Belikov, S.2    Wieslander, L.3
  • 54
    • 40649095272 scopus 로고    scopus 로고
    • Molecular dissection of mammalian RNA polymerase II transcriptional termination.
    • West S, Proudfoot NJ, Dye MJ. Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol Cell 2008, 29:600-610.
    • (2008) Mol Cell , vol.29 , pp. 600-610
    • West, S.1    Proudfoot, N.J.2    Dye, M.J.3
  • 56
    • 65249151979 scopus 로고    scopus 로고
    • Polyadenylation releases mRNA from RNA polymerase II in a process that is licensed by splicing.
    • Rigo F, Martinson HG. Polyadenylation releases mRNA from RNA polymerase II in a process that is licensed by splicing. RNA 2009, 15:823-836.
    • (2009) RNA , vol.15 , pp. 823-836
    • Rigo, F.1    Martinson, H.G.2
  • 57
    • 49349110521 scopus 로고    scopus 로고
    • Expression of human snRNA genes from beginning to end.
    • Egloff S, O'Reilly D, Murphy S. Expression of human snRNA genes from beginning to end. Biochem Soc Trans 2008, 36:590-594.
    • (2008) Biochem Soc Trans , vol.36 , pp. 590-594
    • Egloff, S.1    O'Reilly, D.2    Murphy, S.3
  • 58
    • 0025863511 scopus 로고
    • The regulation of histone synthesis in the cell cycle.
    • Osley MA. The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 1991, 60:827-861.
    • (1991) Annu Rev Biochem , vol.60 , pp. 827-861
    • Osley, M.A.1
  • 59
    • 34249660683 scopus 로고    scopus 로고
    • Multiple independent evolutionary solutions to core histone gene regulation.
    • Marino-Ramirez L, Jordan IK, Landsman D. Multiple independent evolutionary solutions to core histone gene regulation. Genome Biol 2006, 7:R122.
    • (2006) Genome Biol , vol.7
    • Marino-Ramirez, L.1    Jordan, I.K.2    Landsman, D.3
  • 60
    • 0033027728 scopus 로고    scopus 로고
    • The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter.
    • Kuhlman TC, Cho H, Reinberg D, Hernandez N. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 1999, 19:2130-2141.
    • (1999) Mol Cell Biol , vol.19 , pp. 2130-2141
    • Kuhlman, T.C.1    Cho, H.2    Reinberg, D.3    Hernandez, N.4
  • 61
    • 84862749278 scopus 로고    scopus 로고
    • A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.
    • Zaborowska J, Taylor A, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012, 3:92-104.
    • (2012) Transcription , vol.3 , pp. 92-104
    • Zaborowska, J.1    Taylor, A.2    Murphy, S.3
  • 63
    • 13744254695 scopus 로고    scopus 로고
    • A large-scale analysis of mRNA polyadenylation of human and mouse genes.
    • Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201-212.
    • (2005) Nucleic Acids Res , vol.33 , pp. 201-212
    • Tian, B.1    Hu, J.2    Zhang, H.3    Lutz, C.S.4
  • 64
    • 0025029405 scopus 로고
    • Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro.
    • Sheets MD, Ogg SC, Wickens MP. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res 1990, 18:5799-5805.
    • (1990) Nucleic Acids Res , vol.18 , pp. 5799-5805
    • Sheets, M.D.1    Ogg, S.C.2    Wickens, M.P.3
  • 65
  • 66
    • 42449084129 scopus 로고    scopus 로고
    • Protein factors in pre-mRNA 3′-end processing.
    • Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 2008, 65:1099-1122.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 1099-1122
    • Mandel, C.R.1    Bai, Y.2    Tong, L.3
  • 68
    • 0024762583 scopus 로고
    • Four factors are required for 3′-end cleavage of pre-mRNAs.
    • Takagaki Y, Ryner LC, Manley JL. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev 1989, 3:1711-1724.
    • (1989) Genes Dev , vol.3 , pp. 1711-1724
    • Takagaki, Y.1    Ryner, L.C.2    Manley, J.L.3
  • 69
    • 1642488290 scopus 로고    scopus 로고
    • Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease.
    • Ryan K, Calvo O, Manley JL. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 2004, 10:565-573.
    • (2004) RNA , vol.10 , pp. 565-573
    • Ryan, K.1    Calvo, O.2    Manley, J.L.3
  • 70
    • 0030920331 scopus 로고    scopus 로고
    • RNA recognition by the human polyadenylation factor CstF.
    • Takagaki Y, Manley JL. RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 1997, 17:3907-3914.
    • (1997) Mol Cell Biol , vol.17 , pp. 3907-3914
    • Takagaki, Y.1    Manley, J.L.2
  • 71
    • 84863093884 scopus 로고    scopus 로고
    • Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length.
    • Martin G, Gruber AR, Keller W, Zavolan M. Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 2012, 1:753-763.
    • (2012) Cell Rep , vol.1 , pp. 753-763
    • Martin, G.1    Gruber, A.R.2    Keller, W.3    Zavolan, M.4
  • 72
    • 0041312652 scopus 로고    scopus 로고
    • Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA.
    • Kerwitz Y, Kuhn U, Lilie H, Knoth A, Scheuermann T, Friedrich H, Schwarz E, Wahle E. Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. EMBO J 2003, 22:3705-3714.
    • (2003) EMBO J , vol.22 , pp. 3705-3714
    • Kerwitz, Y.1    Kuhn, U.2    Lilie, H.3    Knoth, A.4    Scheuermann, T.5    Friedrich, H.6    Schwarz, E.7    Wahle, E.8
  • 73
    • 69249151288 scopus 로고    scopus 로고
    • Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor.
    • Kuhn U, Gundel M, Knoth A, Kerwitz Y, Rudel S, Wahle E. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem 2009, 284:22803-22814.
    • (2009) J Biol Chem , vol.284 , pp. 22803-22814
    • Kuhn, U.1    Gundel, M.2    Knoth, A.3    Kerwitz, Y.4    Rudel, S.5    Wahle, E.6
  • 74
    • 77949490923 scopus 로고    scopus 로고
    • Phosphorylation of TFIIB links transcription initiation and termination.
    • Wang Y, Fairley JA, Roberts SG. Phosphorylation of TFIIB links transcription initiation and termination. Curr Biol 2010, 20:548-553.
    • (2010) Curr Biol , vol.20 , pp. 548-553
    • Wang, Y.1    Fairley, J.A.2    Roberts, S.G.3
  • 75
    • 0030798246 scopus 로고    scopus 로고
    • Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA.
    • Dantonel JC, Murthy KG, Manley JL, Tora L. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 1997, 389:399-402.
    • (1997) Nature , vol.389 , pp. 399-402
    • Dantonel, J.C.1    Murthy, K.G.2    Manley, J.L.3    Tora, L.4
  • 76
    • 0035947082 scopus 로고    scopus 로고
    • Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination.
    • Calvo O, Manley JL. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol Cell 2001, 7:1013-1023.
    • (2001) Mol Cell , vol.7 , pp. 1013-1023
    • Calvo, O.1    Manley, J.L.2
  • 78
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.
    • Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001, 292:1876-1882.
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 79
    • 84863182811 scopus 로고    scopus 로고
    • The interaction of Pcf11 and Clp1 is needed for mRNA 3′-end formation and is modulated by amino acids in the ATP-binding site.
    • Ghazy MA, Gordon JM, Lee SD, Singh BN, Bohm A, Hampsey M, Moore C. The interaction of Pcf11 and Clp1 is needed for mRNA 3′-end formation and is modulated by amino acids in the ATP-binding site. Nucleic Acids Res 2012, 40:1214-1225.
    • (2012) Nucleic Acids Res , vol.40 , pp. 1214-1225
    • Ghazy, M.A.1    Gordon, J.M.2    Lee, S.D.3    Singh, B.N.4    Bohm, A.5    Hampsey, M.6    Moore, C.7
  • 80
    • 0038219583 scopus 로고    scopus 로고
    • Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination.
    • Sadowski M, Dichtl B, Hubner W, Keller W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J 2003, 22:2167-2177.
    • (2003) EMBO J , vol.22 , pp. 2167-2177
    • Sadowski, M.1    Dichtl, B.2    Hubner, W.3    Keller, W.4
  • 81
    • 3142615882 scopus 로고    scopus 로고
    • Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors.
    • Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 2004, 430:223-226.
    • (2004) Nature , vol.430 , pp. 223-226
    • Meinhart, A.1    Cramer, P.2
  • 83
    • 0036898897 scopus 로고    scopus 로고
    • Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences.
    • Marzluff WF, Duronio RJ. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol 2002, 14:692-699.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 692-699
    • Marzluff, W.F.1    Duronio, R.J.2
  • 84
    • 84864387269 scopus 로고    scopus 로고
    • The control of histone gene expression.
    • Rattray AM, Muller B. The control of histone gene expression. Biochem Soc Trans 2012, 40:880-885.
    • (2012) Biochem Soc Trans , vol.40 , pp. 880-885
    • Rattray, A.M.1    Muller, B.2
  • 85
    • 0025959180 scopus 로고
    • An intact histone 3′-processing site is required for transcription termination in a mouse histone H2a gene.
    • Chodchoy N, Pandey NB, Marzluff WF. An intact histone 3′-processing site is required for transcription termination in a mouse histone H2a gene. Mol Cell Biol 1991, 11:497-509.
    • (1991) Mol Cell Biol , vol.11 , pp. 497-509
    • Chodchoy, N.1    Pandey, N.B.2    Marzluff, W.F.3
  • 86
    • 0037980144 scopus 로고    scopus 로고
    • Cotranscriptional processing of Drosophila histone mRNAs.
    • Adamson TE, Price DH. Cotranscriptional processing of Drosophila histone mRNAs. Mol Cell Biol 2003, 23:4046-4055.
    • (2003) Mol Cell Biol , vol.23 , pp. 4046-4055
    • Adamson, T.E.1    Price, D.H.2
  • 87
    • 0028321764 scopus 로고
    • The site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP.
    • Scharl EC, Steitz JA. The site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP. EMBO J 1994, 13:2432-2440.
    • (1994) EMBO J , vol.13 , pp. 2432-2440
    • Scharl, E.C.1    Steitz, J.A.2
  • 88
    • 0031883640 scopus 로고    scopus 로고
    • Functional importance of conserved nucleotides at the histone RNA 3′ processing site.
    • Furger A, Schaller A, Schumperli D. Functional importance of conserved nucleotides at the histone RNA 3′ processing site. RNA 1998, 4:246-256.
    • (1998) RNA , vol.4 , pp. 246-256
    • Furger, A.1    Schaller, A.2    Schumperli, D.3
  • 89
    • 26244452759 scopus 로고    scopus 로고
    • The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing.
    • Dominski Z, Yang XC, Marzluff WF. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 2005, 123:37-48.
    • (2005) Cell , vol.123 , pp. 37-48
    • Dominski, Z.1    Yang, X.C.2    Marzluff, W.F.3
  • 90
    • 58149460414 scopus 로고    scopus 로고
    • Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing.
    • Yang XC, Sullivan KD, Marzluff WF, Dominski Z. Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing. Mol Cell Biol 2009, 29:31-42.
    • (2009) Mol Cell Biol , vol.29 , pp. 31-42
    • Yang, X.C.1    Sullivan, K.D.2    Marzluff, W.F.3    Dominski, Z.4
  • 91
    • 26944459450 scopus 로고    scopus 로고
    • Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs.
    • Kolev NG, Steitz JA. Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs. Genes Dev 2005, 19:2583-2592.
    • (2005) Genes Dev , vol.19 , pp. 2583-2592
    • Kolev, N.G.1    Steitz, J.A.2
  • 92
    • 36248931620 scopus 로고    scopus 로고
    • A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing.
    • Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 2007, 28:692-699.
    • (2007) Mol Cell , vol.28 , pp. 692-699
    • Wagner, E.J.1    Burch, B.D.2    Godfrey, A.C.3    Salzler, H.R.4    Duronio, R.J.5    Marzluff, W.F.6
  • 93
    • 33750246989 scopus 로고    scopus 로고
    • Binding of human SLBP on the 3′-UTR of histone precursor H4-12 mRNA induces structural rearrangements that enable U7 snRNA anchoring.
    • Jaeger S, Martin F, Rudinger-Thirion J, Giege R, Eriani G. Binding of human SLBP on the 3′-UTR of histone precursor H4-12 mRNA induces structural rearrangements that enable U7 snRNA anchoring. Nucleic Acids Res 2006, 34:4987-4995.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4987-4995
    • Jaeger, S.1    Martin, F.2    Rudinger-Thirion, J.3    Giege, R.4    Eriani, G.5
  • 94
    • 0036142684 scopus 로고    scopus 로고
    • A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3′-end processing.
    • Dominski Z, Erkmann JA, Yang X, Sanchez R, Marzluff WF. A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3′-end processing. Genes Dev 2002, 16:58-71.
    • (2002) Genes Dev , vol.16 , pp. 58-71
    • Dominski, Z.1    Erkmann, J.A.2    Yang, X.3    Sanchez, R.4    Marzluff, W.F.5
  • 95
    • 17544370375 scopus 로고    scopus 로고
    • U7 snRNP-specific Lsm11 protein: dual binding contacts with the 100 kDa zinc finger processing factor (ZFP100) and a ZFP100-independent function in histone RNA 3′ end processing.
    • Azzouz TN, Gruber A, Schumperli D. U7 snRNP-specific Lsm11 protein: dual binding contacts with the 100 kDa zinc finger processing factor (ZFP100) and a ZFP100-independent function in histone RNA 3′ end processing. Nucleic Acids Res 2005, 33:2106-2117.
    • (2005) Nucleic Acids Res , vol.33 , pp. 2106-2117
    • Azzouz, T.N.1    Gruber, A.2    Schumperli, D.3
  • 96
    • 33745632768 scopus 로고    scopus 로고
    • Conserved zinc fingers mediate multiple functions of ZFP100, a U7snRNP associated protein.
    • Wagner EJ, Ospina JK, Hu Y, Dundr M, Matera AG, Marzluff WF. Conserved zinc fingers mediate multiple functions of ZFP100, a U7snRNP associated protein. RNA 2006, 12:1206-1218.
    • (2006) RNA , vol.12 , pp. 1206-1218
    • Wagner, E.J.1    Ospina, J.K.2    Hu, Y.3    Dundr, M.4    Matera, A.G.5    Marzluff, W.F.6
  • 97
    • 70350005393 scopus 로고    scopus 로고
    • FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs.
    • Yang XC, Burch BD, Yan Y, Marzluff WF, Dominski Z. FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs. Mol Cell 2009, 36:267-278.
    • (2009) Mol Cell , vol.36 , pp. 267-278
    • Yang, X.C.1    Burch, B.D.2    Yan, Y.3    Marzluff, W.F.4    Dominski, Z.5
  • 99
    • 0034650723 scopus 로고    scopus 로고
    • Evolutionary complementation for polymerase II CTD function.
    • Stiller JW, McConaughy BL, Hall BD. Evolutionary complementation for polymerase II CTD function. Yeast 2000, 16:57-64.
    • (2000) Yeast , vol.16 , pp. 57-64
    • Stiller, J.W.1    McConaughy, B.L.2    Hall, B.D.3
  • 100
    • 79960455840 scopus 로고    scopus 로고
    • Deciphering the RNA polymerase II CTD code in fission yeast.
    • Schwer B, Shuman S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol Cell 2011, 43:311-318.
    • (2011) Mol Cell , vol.43 , pp. 311-318
    • Schwer, B.1    Shuman, S.2
  • 102
    • 28644451014 scopus 로고    scopus 로고
    • P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes.
    • Medlin J, Scurry A, Taylor A, Zhang F, Peterlin BM, Murphy S. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J 2005, 24:4154-4165.
    • (2005) EMBO J , vol.24 , pp. 4154-4165
    • Medlin, J.1    Scurry, A.2    Taylor, A.3    Zhang, F.4    Peterlin, B.M.5    Murphy, S.6
  • 103
    • 43149102067 scopus 로고    scopus 로고
    • Transcriptional regulation of human small nuclear RNA genes.
    • Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. Biochim Biophys Acta 2008, 1779:295-305.
    • (2008) Biochim Biophys Acta , vol.1779 , pp. 295-305
    • Jawdekar, G.W.1    Henry, R.W.2
  • 104
    • 0022975147 scopus 로고
    • Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements.
    • Hernandez N, Weiner AM. Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements. Cell 1986, 47:249-258.
    • (1986) Cell , vol.47 , pp. 249-258
    • Hernandez, N.1    Weiner, A.M.2
  • 105
    • 0021243543 scopus 로고
    • Synthesis of human U1 RNA. II. Identification of two regions of the promoter essential for transcription initiation at position +1.
    • Skuzeski JM, Lund E, Murphy JT, Steinberg TH, Burgess RR, Dahlberg JE. Synthesis of human U1 RNA. II. Identification of two regions of the promoter essential for transcription initiation at position +1. J Biol Chem 1984, 259:8345-8352.
    • (1984) J Biol Chem , vol.259 , pp. 8345-8352
    • Skuzeski, J.M.1    Lund, E.2    Murphy, J.T.3    Steinberg, T.H.4    Burgess, R.R.5    Dahlberg, J.E.6
  • 106
    • 0023644548 scopus 로고
    • Functional elements of the human U1 RNA promoter. Identification of five separate regions required for efficient transcription and template competition.
    • Murphy JT, Skuzeski JT, Lund E, Steinberg TH, Burgess RR, Dahlberg JE. Functional elements of the human U1 RNA promoter. Identification of five separate regions required for efficient transcription and template competition. J Biol Chem 1987, 262:1795-1803.
    • (1987) J Biol Chem , vol.262 , pp. 1795-1803
    • Murphy, J.T.1    Skuzeski, J.T.2    Lund, E.3    Steinberg, T.H.4    Burgess, R.R.5    Dahlberg, J.E.6
  • 107
    • 0027200633 scopus 로고
    • Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE.
    • Sadowski CL, Henry RW, Lobo SM, Hernandez N. Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Genes Dev 1993, 7:1535-1548.
    • (1993) Genes Dev , vol.7 , pp. 1535-1548
    • Sadowski, C.L.1    Henry, R.W.2    Lobo, S.M.3    Hernandez, N.4
  • 108
    • 26844493853 scopus 로고    scopus 로고
    • Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II.
    • Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005, 123:265-276.
    • (2005) Cell , vol.123 , pp. 265-276
    • Baillat, D.1    Hakimi, M.A.2    Naar, A.M.3    Shilatifard, A.4    Cooch, N.5    Shiekhattar, R.6
  • 109
    • 0033577767 scopus 로고    scopus 로고
    • Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo.
    • Cuello P, Boyd DC, Dye MJ, Proudfoot NJ, Murphy S. Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO J 1999, 18:2867-2877.
    • (1999) EMBO J , vol.18 , pp. 2867-2877
    • Cuello, P.1    Boyd, D.C.2    Dye, M.J.3    Proudfoot, N.J.4    Murphy, S.5
  • 110
    • 0021849974 scopus 로고
    • Transcription boundaries of U1 small nuclear RNA.
    • Kunkel GR, Pederson T. Transcription boundaries of U1 small nuclear RNA. Mol Cell Biol 1985, 5:2332-2340.
    • (1985) Mol Cell Biol , vol.5 , pp. 2332-2340
    • Kunkel, G.R.1    Pederson, T.2
  • 111
    • 0037450637 scopus 로고    scopus 로고
    • The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA.
    • Medlin JE, Uguen P, Taylor A, Bentley DL, Murphy S. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA. EMBO J 2003, 22:925-934.
    • (2003) EMBO J , vol.22 , pp. 925-934
    • Medlin, J.E.1    Uguen, P.2    Taylor, A.3    Bentley, D.L.4    Murphy, S.5
  • 112
    • 0347986661 scopus 로고    scopus 로고
    • Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3′ processing.
    • Jacobs EY, Ogiwara I, Weiner AM. Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3′ processing. Mol Cell Biol 2004, 24:846-855.
    • (2004) Mol Cell Biol , vol.24 , pp. 846-855
    • Jacobs, E.Y.1    Ogiwara, I.2    Weiner, A.M.3
  • 113
    • 0042236985 scopus 로고    scopus 로고
    • The 3′ ends of human pre-snRNAs are produced by RNA polymerase II CTD-dependent RNA processing.
    • Uguen P, Murphy S. The 3′ ends of human pre-snRNAs are produced by RNA polymerase II CTD-dependent RNA processing. EMBO J 2003, 22:4544-4554.
    • (2003) EMBO J , vol.22 , pp. 4544-4554
    • Uguen, P.1    Murphy, S.2
  • 114
    • 0029862521 scopus 로고    scopus 로고
    • Increasing the distance between the snRNA promoter and the 3′ box decreases the efficiency of snRNA 3′-end formation.
    • Ramamurthy L, Ingledue TC, Pilch DR, Kay BK, Marzluff WF. Increasing the distance between the snRNA promoter and the 3′ box decreases the efficiency of snRNA 3′-end formation. Nucleic Acids Res 1996, 24:4525-4534.
    • (1996) Nucleic Acids Res , vol.24 , pp. 4525-4534
    • Ramamurthy, L.1    Ingledue, T.C.2    Pilch, D.R.3    Kay, B.K.4    Marzluff, W.F.5
  • 115
    • 0024095898 scopus 로고
    • Elements required for transcription initiation of the human U2 snRNA gene coincide with elements required for snRNA 3′ end formation.
    • Hernandez N, Lucito R. Elements required for transcription initiation of the human U2 snRNA gene coincide with elements required for snRNA 3′ end formation. EMBO J 1988, 7:3125-3134.
    • (1988) EMBO J , vol.7 , pp. 3125-3134
    • Hernandez, N.1    Lucito, R.2
  • 116
    • 0022969698 scopus 로고
    • 3′ End formation of U1 snRNA precursors is coupled to transcription from snRNA promoters.
    • de Vegvar HE, Lund E, Dahlberg JE. 3′ End formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 1986, 47:259-266.
    • (1986) Cell , vol.47 , pp. 259-266
    • de Vegvar, H.E.1    Lund, E.2    Dahlberg, J.E.3
  • 117
    • 0035921929 scopus 로고    scopus 로고
    • RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts.
    • Steinmetz EJ, Conrad NK, Brow DA, Corden JL. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 2001, 413:327-331.
    • (2001) Nature , vol.413 , pp. 327-331
    • Steinmetz, E.J.1    Conrad, N.K.2    Brow, D.A.3    Corden, J.L.4
  • 118
    • 33748424364 scopus 로고    scopus 로고
    • Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3.
    • Arigo JT, Eyler DE, Carroll KL, Corden JL. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 2006, 23:841-851.
    • (2006) Mol Cell , vol.23 , pp. 841-851
    • Arigo, J.T.1    Eyler, D.E.2    Carroll, K.L.3    Corden, J.L.4
  • 119
    • 33748435751 scopus 로고    scopus 로고
    • Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance.
    • Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 2006, 23:853-864.
    • (2006) Mol Cell , vol.23 , pp. 853-864
    • Thiebaut, M.1    Kisseleva-Romanova, E.2    Rougemaille, M.3    Boulay, J.4    Libri, D.5
  • 120
    • 30744467674 scopus 로고    scopus 로고
    • Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts.
    • Vasiljeva L, Buratowski S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 2006, 21:239-248.
    • (2006) Mol Cell , vol.21 , pp. 239-248
    • Vasiljeva, L.1    Buratowski, S.2
  • 121
    • 0029960432 scopus 로고    scopus 로고
    • Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1.
    • Steinmetz EJ, Brow DA. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol Cell Biol 1996, 16:6993-7003.
    • (1996) Mol Cell Biol , vol.16 , pp. 6993-7003
    • Steinmetz, E.J.1    Brow, D.A.2
  • 122
    • 42149154858 scopus 로고    scopus 로고
    • Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination.
    • Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev 2008, 22:1082-1092.
    • (2008) Genes Dev , vol.22 , pp. 1082-1092
    • Kawauchi, J.1    Mischo, H.2    Braglia, P.3    Rondon, A.4    Proudfoot, N.J.5
  • 124
    • 0032499774 scopus 로고    scopus 로고
    • Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association.
    • Steinmetz EJ, Brow DA. Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc Natl Acad Sci U S A 1998, 95:6699-6704.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 6699-6704
    • Steinmetz, E.J.1    Brow, D.A.2
  • 125
    • 3042796191 scopus 로고    scopus 로고
    • Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts.
    • Carroll KL, Pradhan DA, Granek JA, Clarke ND, Corden JL. Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 2004, 24:6241-6252.
    • (2004) Mol Cell Biol , vol.24 , pp. 6241-6252
    • Carroll, K.L.1    Pradhan, D.A.2    Granek, J.A.3    Clarke, N.D.4    Corden, J.L.5
  • 127
    • 33847284995 scopus 로고    scopus 로고
    • Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements.
    • Carroll KL, Ghirlando R, Ames JM, Corden JL. Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 2007, 13:361-373.
    • (2007) RNA , vol.13 , pp. 361-373
    • Carroll, K.L.1    Ghirlando, R.2    Ames, J.M.3    Corden, J.L.4
  • 128
    • 49449105283 scopus 로고    scopus 로고
    • Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice.
    • Gudipati RK, Villa T, Boulay J, Libri D. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol 2008, 15:786-794.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 786-794
    • Gudipati, R.K.1    Villa, T.2    Boulay, J.3    Libri, D.4
  • 130
    • 49449110180 scopus 로고    scopus 로고
    • The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain.
    • Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 2008, 15:795-804.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 795-804
    • Vasiljeva, L.1    Kim, M.2    Mutschler, H.3    Buratowski, S.4    Meinhart, A.5
  • 131
    • 0345373987 scopus 로고    scopus 로고
    • Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1.
    • He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M, Moore CL. Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev 2003, 17:1030-1042.
    • (2003) Genes Dev , vol.17 , pp. 1030-1042
    • He, X.1    Khan, A.U.2    Cheng, H.3    Pappas, D.L.4    Hampsey, M.5    Moore, C.L.6
  • 132
    • 33846611494 scopus 로고    scopus 로고
    • Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation.
    • Reyes-Reyes M, Hampsey M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol 2007, 27:926-936.
    • (2007) Mol Cell Biol , vol.27 , pp. 926-936
    • Reyes-Reyes, M.1    Hampsey, M.2
  • 133
    • 34548219406 scopus 로고    scopus 로고
    • A transcription-independent role for TFIIB in gene looping.
    • Singh BN, Hampsey M. A transcription-independent role for TFIIB in gene looping. Mol Cell 2007, 27:806-8016.
    • (2007) Mol Cell , vol.27 , pp. 806-8016
    • Singh, B.N.1    Hampsey, M.2
  • 134
    • 42449140588 scopus 로고    scopus 로고
    • Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene.
    • Tan-Wong SM, French JD, Proudfoot NJ, Brown MA. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc Natl Acad Sci U S A 2008, 105:5160-5165.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 5160-5165
    • Tan-Wong, S.M.1    French, J.D.2    Proudfoot, N.J.3    Brown, M.A.4
  • 135
    • 70349779344 scopus 로고    scopus 로고
    • Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae.
    • Rondon AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 2009, 36:88-98.
    • (2009) Mol Cell , vol.36 , pp. 88-98
    • Rondon, A.G.1    Mischo, H.E.2    Kawauchi, J.3    Proudfoot, N.J.4
  • 136
    • 0024988383 scopus 로고
    • In vitro polyadenylation is stimulated by the presence of an upstream intron.
    • Niwa M, Rose SD, Berget SM. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev 1990, 4:1552-1559.
    • (1990) Genes Dev , vol.4 , pp. 1552-1559
    • Niwa, M.1    Rose, S.D.2    Berget, S.M.3
  • 137
    • 37849032986 scopus 로고    scopus 로고
    • Functional coupling of last-intron splicing and 3′-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage.
    • Rigo F, Martinson HG. Functional coupling of last-intron splicing and 3′-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol Cell Biol 2008, 28:849-862.
    • (2008) Mol Cell Biol , vol.28 , pp. 849-862
    • Rigo, F.1    Martinson, H.G.2
  • 138
    • 0033105008 scopus 로고    scopus 로고
    • Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II.
    • Dye MJ, Proudfoot NJ. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol Cell 1999, 3:371-378.
    • (1999) Mol Cell , vol.3 , pp. 371-378
    • Dye, M.J.1    Proudfoot, N.J.2
  • 139
    • 33745944934 scopus 로고    scopus 로고
    • Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing.
    • Kyburz A, Friedlein A, Langen H, Keller W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol Cell 2006, 23:195-205.
    • (2006) Mol Cell , vol.23 , pp. 195-205
    • Kyburz, A.1    Friedlein, A.2    Langen, H.3    Keller, W.4
  • 140
    • 2942650872 scopus 로고    scopus 로고
    • 3′-Box-dependent processing of human pre-U1 snRNA requires a combination of RNA and protein co-factors.
    • Uguen P, Murphy S. 3′-Box-dependent processing of human pre-U1 snRNA requires a combination of RNA and protein co-factors. Nucleic Acids Res 2004, 32:2987-2994.
    • (2004) Nucleic Acids Res , vol.32 , pp. 2987-2994
    • Uguen, P.1    Murphy, S.2
  • 141
    • 79952631797 scopus 로고    scopus 로고
    • An ending is a new beginning: transcription termination supports re-initiation.
    • Lykke-Andersen S, Mapendano CK, Jensen TH. An ending is a new beginning: transcription termination supports re-initiation. Cell Cycle 2011, 10:863-865.
    • (2011) Cell Cycle , vol.10 , pp. 863-865
    • Lykke-Andersen, S.1    Mapendano, C.K.2    Jensen, T.H.3
  • 142
    • 84859060758 scopus 로고    scopus 로고
    • The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling.
    • Shandilya J, Roberts SG. The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim Biophys Acta 2012, 1819:391-400.
    • (2012) Biochim Biophys Acta , vol.1819 , pp. 391-400
    • Shandilya, J.1    Roberts, S.G.2
  • 144
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells.
    • Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bahler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2012, 151:671-683.
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1    Schmidt, A.2    Codlin, S.3    Chen, W.4    Aebersold, R.5    Bahler, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.