메뉴 건너뛰기




Volumn 71, Issue 10, 2005, Pages 6390-6393

Engineering Candida tenuis xylose reductase for improved utilization of NADH: Antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions

Author keywords

[No Author keywords available]

Indexed keywords

ENZYME KINETICS; MICROBIOLOGY; MOLECULAR STRUCTURE; MUTAGENESIS;

EID: 26844452043     PISSN: 00992240     EISSN: None     Source Type: Journal    
DOI: 10.1128/AEM.71.10.6390-6393.2005     Document Type: Article
Times cited : (36)

References (19)
  • 1
    • 0034869823 scopus 로고    scopus 로고
    • Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation
    • Anderlund, M., P. Radström, and B. Hahn-Hägerdal. 2001. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Metab. Eng. 3:226-235.
    • (2001) Metab. Eng. , vol.3 , pp. 226-235
    • Anderlund, M.1    Radström, P.2    Hahn-Hägerdal, B.3
  • 2
    • 12244255119 scopus 로고    scopus 로고
    • Mathematical modeling of in vitro enzymatic production of 2-keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors
    • Banta, S., M. Boston, A. Jarnagin, and S. Anderson. 2002. Mathematical modeling of in vitro enzymatic production of 2-keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors. Metab. Eng. 4:273-284.
    • (2002) Metab. Eng. , vol.4 , pp. 273-284
    • Banta, S.1    Boston, M.2    Jarnagin, A.3    Anderson, S.4
  • 7
    • 0024357799 scopus 로고
    • A simple method for site-directed mutagenesis using the polymerase chain reaction
    • Hemsley, A., N. Arnheim, M. D. Toney, G. Cortopassi, and D. J. Galas. 1989. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 17:6545-6551.
    • (1989) Nucleic Acids Res. , vol.17 , pp. 6545-6551
    • Hemsley, A.1    Arnheim, N.2    Toney, M.D.3    Cortopassi, G.4    Galas, D.J.5
  • 8
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries, T. W., and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63:495-509.
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 10
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper, M., M. M. Hartog, M. J. Toirkens, M. J. Almering, A. A. Winkler, J. P. van Dijken, and J. T. Prank. 2005. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5:399-409.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    Van Dijken, J.P.6    Prank, J.T.7
  • 11
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle
    • Kuyper, M., A. A. Winkler, J. P. van Dijken, and J. T. Pronk. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4:655-664.
    • (2004) FEMS Yeast Res. , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    Van Dijken, J.P.3    Pronk, J.T.4
  • 12
    • 0342514615 scopus 로고    scopus 로고
    • D-Xylose metabolism by Candida intermedia: Isolation and characterisation of two forms of aldose reductase with different coenzyme specificities
    • Mayr, P., K. Brüggler, K. D. Kulbe, and B. Nidetzky. 2000. D-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B Biomed. Sci. Appl. 737:195-202.
    • (2000) J. Chromatogr. B Biomed. Sci. Appl. , vol.737 , pp. 195-202
    • Mayr, P.1    Brüggler, K.2    Kulbe, K.D.3    Nidetzky, B.4
  • 13
    • 0028821530 scopus 로고
    • Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity
    • Metzger, M. H., and C. P. Hollenberg. 1995. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur. J. Biochem. 228:50-54.
    • (1995) Eur. J. Biochem. , vol.228 , pp. 50-54
    • Metzger, M.H.1    Hollenberg, C.P.2
  • 14
    • 12844287005 scopus 로고    scopus 로고
    • The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography
    • Petschacher, B., S. Leitgeb, K. L. Kavanagh, D. K. Wilson, and B. Nidetzky. 2005. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem. J. 385:75-83.
    • (2005) Biochem. J. , vol.385 , pp. 75-83
    • Petschacher, B.1    Leitgeb, S.2    Kavanagh, K.L.3    Wilson, D.K.4    Nidetzky, B.5
  • 15
    • 0041528246 scopus 로고    scopus 로고
    • Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production
    • Roca, C., J. Nielsen, and L. Olsson. 2003. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Environ. Microbiol. 69:4732-4736.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4732-4736
    • Roca, C.1    Nielsen, J.2    Olsson, L.3
  • 16
    • 2442684544 scopus 로고    scopus 로고
    • Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
    • Sonderegger, M., M. Schümperli, and U. Sauer. 2004. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70:2892-2897.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 2892-2897
    • Sonderegger, M.1    Schümperli, M.2    Sauer, U.3
  • 17
    • 0343471961 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. I. Experimental observations
    • Theobald, U., W. Mailinger, M. Baltes, M. Rizzi, and M. Reuss. 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. I. Experimental observations. Biotechnol. Bioeng. 55:305-316.
    • (1997) Biotechnol. Bioeng. , vol.55 , pp. 305-316
    • Theobald, U.1    Mailinger, W.2    Baltes, M.3    Rizzi, M.4    Reuss, M.5
  • 18
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho, R., J. Londesborough, M. Penttilä, and P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69:5892-5897.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 19
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
    • Watanabe, S., T. Kodaki, and K. Makino. 2004. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280:10340-10349.
    • (2004) J. Biol. Chem. , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.