메뉴 건너뛰기




Volumn 229, Issue 5, 2013, Pages 755-764

Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts

Author keywords

ATP; hypoxia; hypoxia inducible factor; metabolism; osteoclast

Indexed keywords

ADENOSINE TRIPHOSPHATE; ALAMAR BLUE; CD14 ANTIGEN; DYE; GLUCOSE; GLUTAMINE; HYPOXIA INDUCIBLE FACTOR; HYPOXIA INDUCIBLE FACTOR 1ALPHA; HYPOXIA INDUCIBLE FACTOR 2ALPHA; LACTIC ACID; METFORMIN; OXYGEN; SMALL INTERFERING RNA; UNCLASSIFIED DRUG;

EID: 84875043252     PISSN: 00223417     EISSN: 10969896     Source Type: Journal    
DOI: 10.1002/path.4159     Document Type: Article
Times cited : (68)

References (45)
  • 1
    • 0028305241 scopus 로고
    • Generalised bone loss in patients with early rheumatoid arthritis
    • Gough AK, Lilley J, Eyre S, et al,. Generalised bone loss in patients with early rheumatoid arthritis. Lancet 1994; 344: 23-27.
    • (1994) Lancet , vol.344 , pp. 23-27
    • Gough, A.K.1    Lilley, J.2    Eyre, S.3
  • 4
    • 0043267732 scopus 로고    scopus 로고
    • Genetic regulation of osteoclast development and function
    • Teitelbaum SL, Ross FP,. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4: 638-649.
    • (2003) Nat Rev Genet , vol.4 , pp. 638-649
    • Teitelbaum, S.L.1    Ross, F.P.2
  • 5
    • 0015089140 scopus 로고
    • DJ MC. Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases
    • Treuhaft PS, DJ MC. Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum 1971; 14: 475-484.
    • (1971) Arthritis Rheum , vol.14 , pp. 475-484
    • Treuhaft, P.S.1
  • 6
    • 34347227058 scopus 로고    scopus 로고
    • Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1
    • Semenza GL,. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405: 1-9.
    • (2007) Biochem J , vol.405 , pp. 1-9
    • Semenza, G.L.1
  • 7
    • 78649364332 scopus 로고    scopus 로고
    • Hypoxia-inducible factors and the response to hypoxic stress
    • Majmundar AJ, Wong WHJ, Simon MC,. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40: 294-309.
    • (2010) Mol Cell , vol.40 , pp. 294-309
    • Majmundar, A.J.1    Wong, W.H.J.2    Simon, M.C.3
  • 8
    • 33947724515 scopus 로고    scopus 로고
    • HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells
    • Fukuda R, Zhang HF, Kim JW, et al,. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129: 111-122.
    • (2007) Cell , vol.129 , pp. 111-122
    • Fukuda, R.1    Zhang, H.F.2    Kim, J.W.3
  • 9
    • 0035027828 scopus 로고    scopus 로고
    • Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells
    • Seagroves TN, Ryan HE, Lu H, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 2001; 21: 3436-3444.
    • (2001) Mol Cell Biol , vol.21 , pp. 3436-3444
    • Seagroves, T.N.1    Ryan, H.E.2    Lu, H.3
  • 10
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou I, Cairns RA, Fontana L, et al,. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3: 187-197.
    • (2006) Cell Metab , vol.3 , pp. 187-197
    • Papandreou, I.1    Cairns, R.A.2    Fontana, L.3
  • 11
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
    • Kim JW, Tchernyshyov I, Semenza GL, et al,. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177-185.
    • (2006) Cell Metab , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3
  • 12
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang H, Bosch-Marce M, Shimoda LA, et al,. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892-10903.
    • (2008) J Biol Chem , vol.283 , pp. 10892-10903
    • Zhang, H.1    Bosch-Marce, M.2    Shimoda, L.A.3
  • 13
    • 0037608771 scopus 로고    scopus 로고
    • Hypoxia is a major stimulator of osteoclast formation and bone resorption
    • Arnett TR, Gibbons DC, Utting JC, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 2003; 196: 2-8.
    • (2003) J Cell Physiol , vol.196 , pp. 2-8
    • Arnett, T.R.1    Gibbons, D.C.2    Utting, J.C.3
  • 14
    • 66849097919 scopus 로고    scopus 로고
    • Acute hypoxia and osteoclast activity: A balance between enhanced resorption and increased apoptosis
    • Knowles HJ, Athanasou NA,. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J Pathol 2009; 218: 256-264.
    • (2009) J Pathol , vol.218 , pp. 256-264
    • Knowles, H.J.1    Athanasou, N.A.2
  • 15
    • 33845385925 scopus 로고    scopus 로고
    • Hypoxia induces giant osteoclast formation and extensive bone resorption in the cat
    • Muzylak M, Price JS, Horton MA,. Hypoxia induces giant osteoclast formation and extensive bone resorption in the cat. Calcif Tissue Int 2006; 79: 301-309.
    • (2006) Calcif Tissue Int , vol.79 , pp. 301-309
    • Muzylak, M.1    Price, J.S.2    Horton, M.A.3
  • 16
    • 77956747911 scopus 로고    scopus 로고
    • Hypoxia stimulates osteoclast formation from human peripheral blood
    • Utting JC, Flanagan AM, Brandao-Burch A, et al,. Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 2010; 28: 374-380.
    • (2010) Cell Biochem Funct , vol.28 , pp. 374-380
    • Utting, J.C.1    Flanagan, A.M.2    Brandao-Burch, A.3
  • 17
    • 78649722176 scopus 로고    scopus 로고
    • Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: Role of angiopoietin-like 4
    • Knowles HJ, Cleton-Jansen AM, Korsching E, et al,. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J 2010; 24: 4648-4659.
    • (2010) FASEB J , vol.24 , pp. 4648-4659
    • Knowles, H.J.1    Cleton-Jansen, A.M.2    Korsching, E.3
  • 18
    • 27144552054 scopus 로고    scopus 로고
    • Comparative study of protein and mRNA expression during osteoclastogenesis
    • Czupalla C, Mansukoski H, Pursche T, et al,. Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics 2005; 5: 3868-3875.
    • (2005) Proteomics , vol.5 , pp. 3868-3875
    • Czupalla, C.1    Mansukoski, H.2    Pursche, T.3
  • 19
    • 35848940094 scopus 로고    scopus 로고
    • Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation
    • Kim JM, Jeong D, Kang HK, et al,. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell Physiol Biochem 2007; 20: 935-946.
    • (2007) Cell Physiol Biochem , vol.20 , pp. 935-946
    • Kim, J.M.1    Jeong, D.2    Kang, H.K.3
  • 20
    • 62049085382 scopus 로고    scopus 로고
    • Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation
    • Ishii KA, Fumoto T, Iwai K, et al. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 2009; 15: 259-266.
    • (2009) Nat Med , vol.15 , pp. 259-266
    • Ishii, K.A.1    Fumoto, T.2    Iwai, K.3
  • 22
    • 29144512729 scopus 로고    scopus 로고
    • Glucose is a key metabolic regulator of osteoclasts; Glucose stimulated increases in ATP:ADP ratio and calmodulin kinase II activity
    • Larsen KI, Falany M, Wang W, et al,. Glucose is a key metabolic regulator of osteoclasts; glucose stimulated increases in ATP:ADP ratio and calmodulin kinase II activity. Biochem Cell Biol 2005; 83: 667-673.
    • (2005) Biochem Cell Biol , vol.83 , pp. 667-673
    • Larsen, K.I.1    Falany, M.2    Wang, W.3
  • 23
    • 0028351065 scopus 로고
    • Microcytophotometric analysis of human osteoclast metabolism: Lack of activity in certain oxidative pathways indicates inability to sustain biosynthesis during resorption
    • Dodds RA, Gowen M, Bradbeer JN,. Microcytophotometric analysis of human osteoclast metabolism: lack of activity in certain oxidative pathways indicates inability to sustain biosynthesis during resorption. J Histochem Cytochem 1994; 42: 599-606.
    • (1994) J Histochem Cytochem , vol.42 , pp. 599-606
    • Dodds, R.A.1    Gowen, M.2    Bradbeer, J.N.3
  • 24
    • 65649105140 scopus 로고    scopus 로고
    • In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay
    • Hynes J, O'Riordan TC, Zhdanov AV, et al,. In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Anal Biochem 2009; 390: 21-28.
    • (2009) Anal Biochem , vol.390 , pp. 21-28
    • Hynes, J.1    O'Riordan, T.C.2    Zhdanov, A.V.3
  • 25
    • 33846614655 scopus 로고    scopus 로고
    • Alterations of cellular bioenergetics in pulmonary artery endothelial cells
    • Xu W, Koeck T, Lara AR, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007; 104: 1342-1347.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1342-1347
    • Xu, W.1    Koeck, T.2    Lara, A.R.3
  • 26
    • 33745840203 scopus 로고    scopus 로고
    • 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
    • Laderoute KR, Amin K, Calaoagan JM, et al. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336-5347.
    • (2006) Mol Cell Biol , vol.26 , pp. 5336-5347
    • Laderoute, K.R.1    Amin, K.2    Calaoagan, J.M.3
  • 27
    • 0035920140 scopus 로고    scopus 로고
    • 2-dependent modulation of mitochondrial fatty acid oxidation
    • 2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem 2001; 276: 27605-27612.
    • (2001) J Biol Chem , vol.276 , pp. 27605-27612
    • Huss, J.M.1    Levy, F.H.2    Kelly, D.P.3
  • 30
    • 0038165450 scopus 로고    scopus 로고
    • +-ATPase interacts with phosphofructokinase-1 in humans
    • +-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 2003; 278: 20013-20018.
    • (2003) J Biol Chem , vol.278 , pp. 20013-20018
    • Su, Y.1    Zhou, A.2    Al-Lamki, R.S.3
  • 31
    • 0035839499 scopus 로고    scopus 로고
    • +-ATPase: Evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump
    • +-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J Biol Chem 2001; 276: 30407-30413.
    • (2001) J Biol Chem , vol.276 , pp. 30407-30413
    • Lu, M.1    Holliday, L.S.2    Zhang, L.3
  • 32
    • 0035008940 scopus 로고    scopus 로고
    • FDG PET of primary benign and malignant bone tumors: Standardized uptake value in 52 lesions
    • Aoki J, Watanabe H, Shinozaki T, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219: 774-777.
    • (2001) Radiology , vol.219 , pp. 774-777
    • Aoki, J.1    Watanabe, H.2    Shinozaki, T.3
  • 34
    • 10644284808 scopus 로고    scopus 로고
    • Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation
    • Li B, Yu S,. Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biol Pharmaceut Bull 2003; 26: 780-786.
    • (2003) Biol Pharmaceut Bull , vol.26 , pp. 780-786
    • Li, B.1    Yu, S.2
  • 35
    • 33750456241 scopus 로고    scopus 로고
    • Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity
    • El Hajj Dib I, Gallet M, Mentaverri R, et al,. Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity. Eur J Pharmacol 2006; 551: 27-33.
    • (2006) Eur J Pharmacol , vol.551 , pp. 27-33
    • El Hajj Dib, I.1    Gallet, M.2    Mentaverri, R.3
  • 36
    • 77954625112 scopus 로고    scopus 로고
    • Imatinib mesylate induces clinical remission in rheumatoid arthritis
    • Pereira I, Fialho S, Castro G, et al,. Imatinib mesylate induces clinical remission in rheumatoid arthritis. Joint Bone Spine 2010; 77: 372-373.
    • (2010) Joint Bone Spine , vol.77 , pp. 372-373
    • Pereira, I.1    Fialho, S.2    Castro, G.3
  • 37
    • 34247121454 scopus 로고    scopus 로고
    • Hypoxia upregulates amino acid transport in a human neuroblastoma cell line
    • Soh H, Wasa M, Fukuzawa M,. Hypoxia upregulates amino acid transport in a human neuroblastoma cell line. J Pediatr Surg 2007; 42: 608-612.
    • (2007) J Pediatr Surg , vol.42 , pp. 608-612
    • Soh, H.1    Wasa, M.2    Fukuzawa, M.3
  • 38
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380-384.
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1    Gameiro, P.A.2    Bell, E.L.3
  • 39
    • 14844313875 scopus 로고    scopus 로고
    • Intracellular machinery for matrix degradation in bone-resorbing osteoclasts
    • Vaaraniemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 2004; 19: 1432-1440.
    • (2004) J Bone Miner Res , vol.19 , pp. 1432-1440
    • Vaaraniemi, J.1    Halleen, J.M.2    Kaarlonen, K.3
  • 40
    • 0026637817 scopus 로고
    • Stimulation of osteoclastic bone resorption by hydrogen peroxide
    • Bax BE, Alam AS, Banerji B, et al. Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem Biophys Res Commun 1992; 183: 1153-1158.
    • (1992) Biochem Biophys Res Commun , vol.183 , pp. 1153-1158
    • Bax, B.E.1    Alam, A.S.2    Banerji, B.3
  • 41
    • 33745497498 scopus 로고    scopus 로고
    • Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation
    • Koh JM, Lee YS, Kim YS, et al. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res 2006; 21: 1003-1011.
    • (2006) J Bone Miner Res , vol.21 , pp. 1003-1011
    • Koh, J.M.1    Lee, Y.S.2    Kim, Y.S.3
  • 42
    • 77950686292 scopus 로고    scopus 로고
    • Role of mitochondrial reactive oxygen species in osteoclast differentiation
    • Srinivasan S, Koenigstein A, Joseph J, et al. Role of mitochondrial reactive oxygen species in osteoclast differentiation. Ann NY Acad Sci USA 2010; 1192: 245-252.
    • (2010) Ann NY Acad Sci USA , vol.1192 , pp. 245-252
    • Srinivasan, S.1    Koenigstein, A.2    Joseph, J.3
  • 43
    • 63449090525 scopus 로고    scopus 로고
    • Pyruvate dehydrogenase kinase 4 expression is synergistically induced by AMP-activated protein kinase and fatty acids
    • Houten SM, Chegary M, Te Brinke H, et al. Pyruvate dehydrogenase kinase 4 expression is synergistically induced by AMP-activated protein kinase and fatty acids. Cell Mol Life Sci 2009; 66: 1283-1294.
    • (2009) Cell Mol Life Sci , vol.66 , pp. 1283-1294
    • Houten, S.M.1    Chegary, M.2    Te Brinke, H.3
  • 44
    • 80052317552 scopus 로고    scopus 로고
    • Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels
    • Mungai PT, Waypa GB, Jairaman A, et al. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 2011; 31: 3531-3545.
    • (2011) Mol Cell Biol , vol.31 , pp. 3531-3545
    • Mungai, P.T.1    Waypa, G.B.2    Jairaman, A.3
  • 45
    • 77957755966 scopus 로고    scopus 로고
    • AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts
    • Lee YS, Kim YS, Lee SY, et al. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 2010; 47: 926-937.
    • (2010) Bone , vol.47 , pp. 926-937
    • Lee, Y.S.1    Kim, Y.S.2    Lee, S.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.