-
1
-
-
34250632829
-
Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125
-
Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104, 7500-7505.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 7500-7505
-
-
Arimoto, K.1
Takahashi, H.2
Hishiki, T.3
Konishi, H.4
Fujita, T.5
Shimotohno, K.6
-
2
-
-
0036297629
-
Multi-resolution contour-based fitting of macromolecular structures
-
Chacon, P., and Wriggers, W. (2002). Multi-resolution contour-based fitting of macromolecular structures. J Mol Biol 317, 375-384.
-
(2002)
J Mol Biol
, vol.317
, pp. 375-384
-
-
Chacon, P.1
Wriggers, W.2
-
3
-
-
77950456761
-
4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
-
Cong, Y., Baker, M. L., Jakana, J., Woolford, D., Miller, E. J., Reissmann, S., Kumar, R. N., Redding-Johanson, A. M., Batth, T. S., and Mukhopadhyay, A. (2010). 4. 0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci U S A 107, 4967-4972.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 4967-4972
-
-
Cong, Y.1
Baker, M.L.2
Jakana, J.3
Woolford, D.4
Miller, E.J.5
Reissmann, S.6
Kumar, R.N.7
Redding-Johanson, A.M.8
Batth, T.S.9
Mukhopadhyay, A.10
-
4
-
-
77957286492
-
Single particle analysis at high resolution
-
Cong, Y., and Ludtke, S. J. (2010). Single particle analysis at high resolution. Methods Enzymol 482, 211-235.
-
(2010)
Methods Enzymol
, vol.482
, pp. 211-235
-
-
Cong, Y.1
Ludtke, S.J.2
-
5
-
-
55949131282
-
Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction
-
Gack, M. U., Kirchhofer, A., Shin, Y. C., Inn, K. S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K. P., and Jung, J. U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A 105, 16743-16748.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 16743-16748
-
-
Gack, M.U.1
Kirchhofer, A.2
Shin, Y.C.3
Inn, K.S.4
Liang, C.5
Cui, S.6
Myong, S.7
Ha, T.8
Hopfner, K.P.9
Jung, J.U.10
-
6
-
-
77949422543
-
Phosphorylation-mediated negative regulation of RIG-I antiviral activity
-
Gack, M. U., Nistal-Villan, E., Inn, K. S., Garcia-Sastre, A., and Jung, J. U. (2010). Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol 84, 3220-3229.
-
(2010)
J Virol
, vol.84
, pp. 3220-3229
-
-
Gack, M.U.1
Nistal-Villan, E.2
Inn, K.S.3
Garcia-Sastre, A.4
Jung, J.U.5
-
7
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack, M. U., Shin, Y. C., Joo, C. H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., and Inoue, S. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920.
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
Shin, Y.C.2
Joo, C.H.3
Urano, T.4
Liang, C.5
Sun, L.6
Takeuchi, O.7
Akira, S.8
Chen, Z.9
Inoue, S.10
-
8
-
-
33750976374
-
5′-Triphosphate RNA is the ligand for RIG-I
-
Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., et al. (2006). 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997.
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
Ellegast, J.2
Kim, S.3
Brzozka, K.4
Jung, A.5
Kato, H.6
Poeck, H.7
Akira, S.8
Conzelmann, K.K.9
Schlee, M.10
-
9
-
-
79961133270
-
MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
-
Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q. X., and Chen, Z. J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461.
-
(2011)
Cell
, vol.146
, pp. 448-461
-
-
Hou, F.1
Sun, L.2
Zheng, H.3
Skaug, B.4
Jiang, Q.X.5
Chen, Z.J.6
-
11
-
-
81555204380
-
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
-
Jiang, F., Ramanathan, A., Miller, M. T., Tang, G. Q., Gale, M., Jr., Patel, S. S., and M Ramanathan arcotrigiano, J. (2011). Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423-427.
-
(2011)
Nature
, vol.479
, pp. 423-427
-
-
Jiang, F.1
Ramanathan, A.2
Miller, M.T.3
Tang, G.Q.4
Gale Jr., M.5
Patel, S.S.6
M Ramanathan arcotrigiano, J.7
-
12
-
-
84862994793
-
Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response
-
Jiang, X., Kinch, L. N., Brautigam, C. A., Chen, X., Du, F., Grishin, N. V., and Chen, Z. J. (2012). Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity 36, 959-973.
-
(2012)
Immunity
, vol.36
, pp. 959-973
-
-
Jiang, X.1
Kinch, L.N.2
Brautigam, C.A.3
Chen, X.4
Du, F.5
Grishin, N.V.6
Chen, Z.J.7
-
13
-
-
46949097299
-
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5
-
Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T. S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205, 1601-1610.
-
(2008)
J Exp Med
, vol.205
, pp. 1601-1610
-
-
Kato, H.1
Takeuchi, O.2
Mikamo-Satoh, E.3
Hirai, R.4
Kawai, T.5
Matsushita, K.6
Hiiragi, A.7
Dermody, T.S.8
Fujita, T.9
Akira, S.10
-
14
-
-
27144440523
-
IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
-
Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981-988.
-
(2005)
Nat Immunol
, vol.6
, pp. 981-988
-
-
Kawai, T.1
Takahashi, K.2
Sato, S.3
Coban, C.4
Kumar, H.5
Kato, H.6
Ishii, K.J.7
Takeuchi, O.8
Akira, S.9
-
15
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski, E., Lunardi, T., McCarthy, A. A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., and Cusack, S. (2011). Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423-435.
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
Lunardi, T.2
McCarthy, A.A.3
Louber, J.4
Brunel, J.5
Grigorov, B.6
Gerlier, D.7
Cusack, S.8
-
16
-
-
65649141586
-
Pathogen recognition in the innate immune response
-
Kumar, H., Kawai, T., and Akira, S. (2009). Pathogen recognition in the innate immune response. Biochem J 420, 1-16.
-
(2009)
Biochem J
, vol.420
, pp. 1-16
-
-
Kumar, H.1
Kawai, T.2
Akira, S.3
-
17
-
-
84862604699
-
Structural insights into RNA recognition and activation of RIG-I-like receptors
-
Leung, D. W., and Amarasinghe, G. K. (2012). Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 22, 297-303.
-
(2012)
Curr Opin Struct Biol
, vol.22
, pp. 297-303
-
-
Leung, D.W.1
Amarasinghe, G.K.2
-
18
-
-
84861181618
-
The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
-
Liu, H. M., Loo, Y. M., Horner, S. M., Zornetzer, G. A., Katze, M. G., and Gale, M., Jr. (2012). The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528-537.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 528-537
-
-
Liu, H.M.1
Loo, Y.M.2
Horner, S.M.3
Zornetzer, G.A.4
Katze, M.G.5
Gale Jr., M.6
-
19
-
-
79952325540
-
Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate
-
Lu, C., Ranjith-Kumar, C. T., Hao, L., Kao, C. C., and Li, P. (2011). Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Res 39, 1565-1575.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 1565-1575
-
-
Lu, C.1
Ranjith-Kumar, C.T.2
Hao, L.3
Kao, C.C.4
Li, P.5
-
20
-
-
77955481642
-
The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain
-
Lu, C., Xu, H., Ranjith-Kumar, C. T., Brooks, M. T., Hou, T. Y., Hu, F., Herr, A. B., Strong, R. K., Kao, C. C., and Li, P. (2010). The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18, 1032-1043.
-
(2010)
Structure
, vol.18
, pp. 1032-1043
-
-
Lu, C.1
Xu, H.2
Ranjith-Kumar, C.T.3
Brooks, M.T.4
Hou, T.Y.5
Hu, F.6
Herr, A.B.7
Strong, R.K.8
Kao, C.C.9
Li, P.10
-
21
-
-
0033377664
-
EMAN: semiautomated software for high-resolution single-particle reconstructions
-
Ludtke, S. J., Baldwin, P. R., and Chiu, W. (1999). EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128, 82-97.
-
(1999)
J Struct Biol
, vol.128
, pp. 82-97
-
-
Ludtke, S.J.1
Baldwin, P.R.2
Chiu, W.3
-
22
-
-
0035940689
-
A 11.5 A single particle reconstruction of GroEL using EMAN
-
Ludtke, S. J., Jakana, J., Song, J. L., Chuang, D. T., and Chiu, W. (2001). A 11. 5 A single particle reconstruction of GroEL using EMAN. J Mol Biol 314, 253-262.
-
(2001)
J Mol Biol
, vol.314
, pp. 253-262
-
-
Ludtke, S.J.1
Jakana, J.2
Song, J.L.3
Chuang, D.T.4
Chiu, W.5
-
23
-
-
84868553355
-
Visualizing the Determinants of Viral RNA Recognition by Innate Immune Sensor RIG-I
-
Luo, D., Kohlway, A., Vela, A., and Pyle, A. M. (2012). Visualizing the Determinants of Viral RNA Recognition by Innate Immune Sensor RIG-I. Structure 20, 1983-1988.
-
(2012)
Structure
, vol.20
, pp. 1983-1988
-
-
Luo, D.1
Kohlway, A.2
Vela, A.3
Pyle, A.M.4
-
24
-
-
84857073450
-
Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction
-
Maharaj, N. P., Wies, E., Stoll, A., and Gack, M. U. (2012). Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. J Virol 86, 1358-1371.
-
(2012)
J Virol
, vol.86
, pp. 1358-1371
-
-
Maharaj, N.P.1
Wies, E.2
Stoll, A.3
Gack, M.U.4
-
25
-
-
27144440476
-
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
-
Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172.
-
(2005)
Nature
, vol.437
, pp. 1167-1172
-
-
Meylan, E.1
Curran, J.2
Hofmann, K.3
Moradpour, D.4
Binder, M.5
Bartenschlager, R.6
Tschopp, J.7
-
26
-
-
77953743809
-
Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production
-
Nistal-Villan, E., Gack, M. U., Martinez-Delgado, G., Maharaj, N. P., Inn, K. S., Yang, H., Wang, R., Aggarwal, A. K., Jung, J. U., and Garcia-Sastre, A. (2010). Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J Biol Chem 285, 20252-20261.
-
(2010)
J Biol Chem
, vol.285
, pp. 20252-20261
-
-
Nistal-Villan, E.1
Gack, M.U.2
Martinez-Delgado, G.3
Maharaj, N.P.4
Inn, K.S.5
Yang, H.6
Wang, R.7
Aggarwal, A.K.8
Jung, J.U.9
Garcia-Sastre, A.10
-
27
-
-
34447536139
-
BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules
-
Oh, S. D., Lao, J. P., Hwang, P. Y., Taylor, A. F., Smith, G. R., and Hunter, N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259-272.
-
(2007)
Cell
, vol.130
, pp. 259-272
-
-
Oh, S.D.1
Lao, J.P.2
Hwang, P.Y.3
Taylor, A.F.4
Smith, G.R.5
Hunter, N.6
-
28
-
-
59449091450
-
Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection
-
Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284, 807-817.
-
(2009)
J Biol Chem
, vol.284
, pp. 807-817
-
-
Oshiumi, H.1
Matsumoto, M.2
Hatakeyama, S.3
Seya, T.4
-
29
-
-
78650189572
-
The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
-
Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. (2010). The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8, 496-509.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 496-509
-
-
Oshiumi, H.1
Miyashita, M.2
Inoue, N.3
Okabe, M.4
Matsumoto, M.5
Seya, T.6
-
30
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates
-
Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997-1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.P.3
Naslund, T.I.4
Liljestrom, P.5
Weber, F.6
Reis e Sousa, C.7
-
31
-
-
33846307026
-
Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2
-
Saito, T., Hirai, R., Loo, Y. M., Owen, D., Johnson, C. L., Sinha, S. C., Akira, S., Fujita, T., and Gale Jr, M. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Science's STKE 1104, 582.
-
(2007)
Science's STKE
, vol.104
, pp. 582
-
-
Saito, T.1
Hirai, R.2
Loo, Y.M.3
Owen, D.4
Johnson, C.L.5
Sinha, S.C.6
Akira, S.7
Fujita, T.8
Gale Jr., M.9
-
32
-
-
68049089651
-
Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
-
Schlee, M., Roth, A., Hornung, V., Hagmann, C. A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G., et al. (2009). Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 331, 25-34.
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
Roth, A.2
Hornung, V.3
Hagmann, C.A.4
Wimmenauer, V.5
Barchet, W.6
Coch, C.7
Janke, M.8
Mihailovic, A.9
Wardle, G.10
-
33
-
-
39649092731
-
Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses
-
Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29, 428-440.
-
(2008)
Mol Cell
, vol.29
, pp. 428-440
-
-
Takahasi, K.1
Yoneyama, M.2
Nishihori, T.3
Hirai, R.4
Kumeta, H.5
Narita, R.6
Gale Jr., M.7
Inagaki, F.8
Fujita, T.9
-
34
-
-
77950343791
-
Pattern recognition receptors and inflammation
-
Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805-820.
-
(2010)
Cell
, vol.140
, pp. 805-820
-
-
Takeuchi, O.1
Akira, S.2
-
35
-
-
33845332754
-
EMAN2: an extensible image processing suite for electron microscopy
-
Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I., and Ludtke, S. J. (2007). EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157, 38-46.
-
(2007)
J Struct Biol
, vol.157
, pp. 38-46
-
-
Tang, G.1
Peng, L.2
Baldwin, P.R.3
Mann, D.S.4
Jiang, W.5
Rees, I.6
Ludtke, S.J.7
-
36
-
-
84860290256
-
Conventions and workflows for using Situs
-
Wriggers, W. (2012). Conventions and workflows for using Situs. Acta Crystallogr D Biol Crystallogr 68, 344-351.
-
(2012)
Acta Crystallogr D Biol Crystallogr
, vol.68
, pp. 344-351
-
-
Wriggers, W.1
-
37
-
-
0032780181
-
Situs: A package for docking crystal structures into low-resolution maps from electron microscopy
-
Wriggers, W., Milligan, R. A., and McCammon, J. A. (1999). Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J Struct Biol 125, 185-195.
-
(1999)
J Struct Biol
, vol.125
, pp. 185-195
-
-
Wriggers, W.1
Milligan, R.A.2
McCammon, J.A.3
-
38
-
-
24944538819
-
VISA is an adapter protein required for virus-triggered IFN-beta signaling
-
Xu, L. G., Wang, Y. Y., Han, K. J., Li, L. Y., Zhai, Z., and Shu, H. B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19, 727-740.
-
(2005)
Mol Cell
, vol.19
, pp. 727-740
-
-
Xu, L.G.1
Wang, Y.Y.2
Han, K.J.3
Li, L.Y.4
Zhai, Z.5
Shu, H.B.6
-
39
-
-
23844438864
-
Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
-
Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y. M., Gale, M., Jr., Akira, S., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175, 2851-2858.
-
(2005)
J Immunol
, vol.175
, pp. 2851-2858
-
-
Yoneyama, M.1
Kikuchi, M.2
Matsumoto, K.3
Imaizumi, T.4
Miyagishi, M.5
Taira, K.6
Foy, E.7
Loo, Y.M.8
Gale Jr., M.9
Akira, S.10
-
40
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730-737.
-
(2004)
Nat Immunol
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
Kikuchi, M.2
Natsukawa, T.3
Shinobu, N.4
Imaizumi, T.5
Miyagishi, M.6
Taira, K.7
Akira, S.8
Fujita, T.9
-
41
-
-
77951708374
-
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
-
Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z. J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330.
-
(2010)
Cell
, vol.141
, pp. 315-330
-
-
Zeng, W.1
Sun, L.2
Jiang, X.3
Chen, X.4
Hou, F.5
Adhikari, A.6
Xu, M.7
Chen, Z.J.8
|