메뉴 건너뛰기




Volumn 52, Issue 1, 2013, Pages 254-263

Structure and functional analysis of the BRCT domain of translesion synthesis DNA polymerase rev1

Author keywords

[No Author keywords available]

Indexed keywords

BRCA1 C-TERMINAL DOMAINS; DNA DAMAGES; DNA POLYMERASE; IN-VITRO; IN-VIVO; PHOSPHATE GROUP; PROTEIN BINDING PARTNERS; SOMATIC MUTATION; TRANSLESION SYNTHESIS; X RAY CRYSTAL STRUCTURES;

EID: 84872113493     PISSN: 00062960     EISSN: 15204995     Source Type: Journal    
DOI: 10.1021/bi301572z     Document Type: Article
Times cited : (14)

References (66)
  • 1
    • 0036682979 scopus 로고    scopus 로고
    • Translesion DNA synthesis in eukaryotes: A one- or two-polymerase affair
    • Prakash, S. and Prakash, L. (2002) Translesion DNA synthesis in eukaryotes: A one- or two-polymerase affair Genes Dev. 16 (15) 1872-1883
    • (2002) Genes Dev. , vol.16 , Issue.15 , pp. 1872-1883
    • Prakash, S.1    Prakash, L.2
  • 2
    • 1942490803 scopus 로고    scopus 로고
    • Replication of damaged DNA
    • Lehmann, A. R. (2003) Replication of damaged DNA Cell Cycle 2 (4) 300-302
    • (2003) Cell Cycle , vol.2 , Issue.4 , pp. 300-302
    • Lehmann, A.R.1
  • 3
    • 21244506437 scopus 로고    scopus 로고
    • Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function
    • Prakash, S., Johnson, R. E., and Prakash, L. (2005) Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function Annu. Rev. Biochem. 74, 317-353
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 317-353
    • Prakash, S.1    Johnson, R.E.2    Prakash, L.3
  • 4
    • 14544287434 scopus 로고    scopus 로고
    • Replication of damaged DNA by translesion synthesis in human cells
    • Lehmann, A. R. (2005) Replication of damaged DNA by translesion synthesis in human cells FEBS Lett. 579 (4) 873-876
    • (2005) FEBS Lett. , vol.579 , Issue.4 , pp. 873-876
    • Lehmann, A.R.1
  • 5
    • 77949571204 scopus 로고    scopus 로고
    • Variations on a theme: Eukaryotic Y-family DNA polymerases
    • Washington, M. T. 2010, Variations on a theme: Eukaryotic Y-family DNA polymerases Biochim. Biophys. Acta 1804, 1113-1123
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1113-1123
    • Washington, M.T.1
  • 6
    • 63849131910 scopus 로고    scopus 로고
    • Eukaryotic Translesion Polymerases and Their Roles and Regulation in DNA Damage Tolerance
    • Waters, L. S. 2009, Eukaryotic Translesion Polymerases and Their Roles and Regulation in DNA Damage Tolerance Microbiol. Mol. Biol. Rev. 73 (1) 134-154
    • (2009) Microbiol. Mol. Biol. Rev. , vol.73 , Issue.1 , pp. 134-154
    • Waters, L.S.1
  • 7
    • 67650429924 scopus 로고    scopus 로고
    • Y-family DNA polymerases in mammalian cells
    • Guo, C. 2009, Y-family DNA polymerases in mammalian cells Cell. Mol. Life Sci. 66 (14) 2363-2381
    • (2009) Cell. Mol. Life Sci. , vol.66 , Issue.14 , pp. 2363-2381
    • Guo, C.1
  • 8
    • 84857411787 scopus 로고    scopus 로고
    • Y-family DNA polymerases and their role in tolerance of cellular DNA damage
    • Sale, J. E., Lehmann, A. R., and Woodgate, R. (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage Nat. Rev. Mol. Cell Biol. 13 (3) 141-152
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , Issue.3 , pp. 141-152
    • Sale, J.E.1    Lehmann, A.R.2    Woodgate, R.3
  • 9
    • 61349138821 scopus 로고    scopus 로고
    • REV1 Is Implicated in the Development of Carcinogen-Induced Lung Cancer
    • Dumstorf, C. A. 2009, REV1 Is Implicated in the Development of Carcinogen-Induced Lung Cancer Mol. Cancer Res. 7 (2) 247-254
    • (2009) Mol. Cancer Res. , vol.7 , Issue.2 , pp. 247-254
    • Dumstorf, C.A.1
  • 10
    • 78650580818 scopus 로고    scopus 로고
    • Error-prone translesion synthesis mediates acquired chemoresistance
    • Xie, K. 2010, Error-prone translesion synthesis mediates acquired chemoresistance Proc. Natl. Acad. Sci. U.S.A. 107 (48) 20792-20797
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , Issue.48 , pp. 20792-20797
    • Xie, K.1
  • 11
    • 84861434605 scopus 로고    scopus 로고
    • DNA Polymerase ζ Is a Major Determinant of Resistance to Platinum-Based Chemotherapeutic Agents
    • Sharma, S. 2012, DNA Polymerase ζ Is a Major Determinant of Resistance to Platinum-Based Chemotherapeutic Agents Mol. Pharmacol. 81 (6) 778-787
    • (2012) Mol. Pharmacol. , vol.81 , Issue.6 , pp. 778-787
    • Sharma, S.1
  • 12
    • 34447572295 scopus 로고    scopus 로고
    • Translesion DNA replication proteins as molecular targets for cancer prevention
    • Watson, N. B., Mukhopadhyay, S., and McGregor, W. G. (2006) Translesion DNA replication proteins as molecular targets for cancer prevention Cancer Lett. 241 (1) 13-22
    • (2006) Cancer Lett. , vol.241 , Issue.1 , pp. 13-22
    • Watson, N.B.1    Mukhopadhyay, S.2    McGregor, W.G.3
  • 13
    • 0037150492 scopus 로고    scopus 로고
    • Cellular roles of DNA polymerase ζ and Rev1 protein
    • Lawrence, C. W. (2002) Cellular roles of DNA polymerase ζ and Rev1 protein DNA Repair 1 (6) 425-435
    • (2002) DNA Repair , vol.1 , Issue.6 , pp. 425-435
    • Lawrence, C.W.1
  • 14
    • 10044266718 scopus 로고    scopus 로고
    • Cellular functions of DNA polymerase ζ and Rev1 protein
    • Lawrence, C. W. (2004) Cellular functions of DNA polymerase ζ and Rev1 protein DNA Repair 69, 167-203
    • (2004) DNA Repair , vol.69 , pp. 167-203
    • Lawrence, C.W.1
  • 15
    • 0034963538 scopus 로고    scopus 로고
    • Eukaryotic mutagenesis and translesion replication dependent on DNA polymerase ζ and Rev1 protein
    • Lawrence, C. W. and Maher, V. M. (2001) Eukaryotic mutagenesis and translesion replication dependent on DNA polymerase ζ and Rev1 protein Biochem. Soc. Trans. 29 (Part 2) 187-191
    • (2001) Biochem. Soc. Trans. , vol.29 , Issue.PART 2 , pp. 187-191
    • Lawrence, C.W.1    Maher, V.M.2
  • 16
    • 0018731397 scopus 로고
    • Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev3 mutant strains
    • Lawrence, C. W. and Christensen, R. B. (1979) Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev3 mutant strains Genetics 92 (2) 397-408
    • (1979) Genetics , vol.92 , Issue.2 , pp. 397-408
    • Lawrence, C.W.1    Christensen, R.B.2
  • 17
    • 0017864080 scopus 로고
    • Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. I. rev1 mutant strains
    • Lawrence, C. W. and Christensen, R. B. (1978) Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. I. rev1 mutant strains J. Mol. Biol. 122 (1) 1-21
    • (1978) J. Mol. Biol. , vol.122 , Issue.1 , pp. 1-21
    • Lawrence, C.W.1    Christensen, R.B.2
  • 18
    • 0034636106 scopus 로고    scopus 로고
    • The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light
    • Gibbs, P. E. 2000, The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light Proc. Natl. Acad. Sci. U.S.A. 97 (8) 4186-4191
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , Issue.8 , pp. 4186-4191
    • Gibbs, P.E.1
  • 19
    • 0032499748 scopus 로고    scopus 로고
    • A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ
    • Gibbs, P. E. M. 1998, A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ Proc. Natl. Acad. Sci. U.S.A. 95 (12) 6876-6880
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , Issue.12 , pp. 6876-6880
    • Gibbs, P.E.M.1
  • 20
    • 0034738983 scopus 로고    scopus 로고
    • Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions
    • Johnson, R. E. 2000, Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions Nature 406 (6799) 1015-1019
    • (2000) Nature , vol.406 , Issue.6799 , pp. 1015-1019
    • Johnson, R.E.1
  • 21
    • 0035871360 scopus 로고    scopus 로고
    • Roles of yeast DNA polymerases δ and ζ and of Rev1 in the bypass of abasic sites
    • Haracska, L. 2001, Roles of yeast DNA polymerases δ and ζ and of Rev1 in the bypass of abasic sites Genes Dev. 15 (8) 945-954
    • (2001) Genes Dev. , vol.15 , Issue.8 , pp. 945-954
    • Haracska, L.1
  • 22
    • 41149181377 scopus 로고    scopus 로고
    • Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase ζ
    • Howell, C. A., Kondratick, C. M., and Washington, M. T. (2008) Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase ζ Nucleic Acids Res. 36 (5) 1731-1740
    • (2008) Nucleic Acids Res. , vol.36 , Issue.5 , pp. 1731-1740
    • Howell, C.A.1    Kondratick, C.M.2    Washington, M.T.3
  • 23
    • 80054717105 scopus 로고    scopus 로고
    • Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast Rev1 protein
    • Pryor, J. M. and Washington, M. T. (2011) Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast Rev1 protein DNA Repair 10 (11) 1138-1144
    • (2011) DNA Repair , vol.10 , Issue.11 , pp. 1138-1144
    • Pryor, J.M.1    Washington, M.T.2
  • 24
    • 3542992656 scopus 로고    scopus 로고
    • Efficient and error-free replication past a minor-groove N-2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase ζ
    • Washington, M. T. 2004, Efficient and error-free replication past a minor-groove N-2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase ζ Mol. Cell. Biol. 24 (16) 6900-6906
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.16 , pp. 6900-6906
    • Washington, M.T.1
  • 25
    • 53049095093 scopus 로고    scopus 로고
    • Kinetic analysis of translesion synthesis opposite bulky N-2- and O-6-alkylguanine DNA adducts by human DNA polymerase REV1
    • Choi, J. Y. and Guengerich, F. P. (2008) Kinetic analysis of translesion synthesis opposite bulky N-2- and O-6-alkylguanine DNA adducts by human DNA polymerase REV1 J. Biol. Chem. 283 (35) 23645-23655
    • (2008) J. Biol. Chem. , vol.283 , Issue.35 , pp. 23645-23655
    • Choi, J.Y.1    Guengerich, F.P.2
  • 26
    • 0036529562 scopus 로고    scopus 로고
    • Response of human REV1 to different DNA damage: Preferential dCMP insertion opposite the lesion
    • Zhang, Y. B. 2002, Response of human REV1 to different DNA damage: Preferential dCMP insertion opposite the lesion Nucleic Acids Res. 30 (7) 1630-1638
    • (2002) Nucleic Acids Res. , vol.30 , Issue.7 , pp. 1630-1638
    • Zhang, Y.B.1
  • 27
    • 0033859845 scopus 로고    scopus 로고
    • Evidence for a second function for Saccharomyces cerevisiae Rev1p
    • Nelson, J. R. 2000, Evidence for a second function for Saccharomyces cerevisiae Rev1p Mol. Microbiol. 37 (3) 549-554
    • (2000) Mol. Microbiol. , vol.37 , Issue.3 , pp. 549-554
    • Nelson, J.R.1
  • 28
    • 48149104225 scopus 로고    scopus 로고
    • Novel conserved motifs in Rev1 C-terminus are required for mutagenic DNA damage tolerance
    • D'Souza, S., Waters, L. S., and Walker, G. C. (2008) Novel conserved motifs in Rev1 C-terminus are required for mutagenic DNA damage tolerance DNA Repair 7 (9) 1455-1470
    • (2008) DNA Repair , vol.7 , Issue.9 , pp. 1455-1470
    • D'Souza, S.1    Waters, L.S.2    Walker, G.C.3
  • 29
    • 84863739595 scopus 로고    scopus 로고
    • NMR Structure and Dynamics of the C-Terminal Domain from Human Revl and Its Complex with Rev1 Interacting Region of DNA Polymerase η
    • Pozhidaeva, A. 2012, NMR Structure and Dynamics of the C-Terminal Domain from Human Revl and Its Complex with Rev1 Interacting Region of DNA Polymerase η Biochemistry 51 (27) 5506-5520
    • (2012) Biochemistry , vol.51 , Issue.27 , pp. 5506-5520
    • Pozhidaeva, A.1
  • 30
    • 84864383681 scopus 로고    scopus 로고
    • Multifaceted Recognition of Vertebrate Rev1 by Translesion Polymerases ζ and κ
    • Wojtaszek, J. 2012, Multifaceted Recognition of Vertebrate Rev1 by Translesion Polymerases ζ and κ J. Biol. Chem. 287 (31) 26400-26408
    • (2012) J. Biol. Chem. , vol.287 , Issue.31 , pp. 26400-26408
    • Wojtaszek, J.1
  • 31
    • 84866633921 scopus 로고    scopus 로고
    • The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ
    • Pustovalova, Y., Bezsonova, I., and Korzhnev, D. M. (2012) The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ FEBS Lett. 586, 3051-3056
    • (2012) FEBS Lett. , vol.586 , pp. 3051-3056
    • Pustovalova, Y.1    Bezsonova, I.2    Korzhnev, D.M.3
  • 32
    • 84866951386 scopus 로고    scopus 로고
    • Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7
    • Kikuchi, S. 2012, Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 J. Biol. Chem. 287, 33847-33852
    • (2012) J. Biol. Chem. , vol.287 , pp. 33847-33852
    • Kikuchi, S.1
  • 33
    • 84866948407 scopus 로고    scopus 로고
    • Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric Pol zeta and Pol kappa
    • Wojtaszek, J. 2012, Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric Pol zeta and Pol kappa J. Biol. Chem. 287, 33836-33846
    • (2012) J. Biol. Chem. , vol.287 , pp. 33836-33846
    • Wojtaszek, J.1
  • 34
    • 0024526246 scopus 로고
    • The Rev1 gene of Saccharomyces cerevisiae: Isolation, sequence, and functional-analysis
    • Larimer, F. W., Perry, J. R., and Hardigree, A. A. (1989) The Rev1 gene of Saccharomyces cerevisiae: Isolation, sequence, and functional-analysis J. Bacteriol. 171 (1) 230-237
    • (1989) J. Bacteriol. , vol.171 , Issue.1 , pp. 230-237
    • Larimer, F.W.1    Perry, J.R.2    Hardigree, A.A.3
  • 35
    • 13744257910 scopus 로고    scopus 로고
    • The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis
    • Jansen, J. G. 2005, The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis Nucleic Acids Res. 33 (1) 356-365
    • (2005) Nucleic Acids Res. , vol.33 , Issue.1 , pp. 356-365
    • Jansen, J.G.1
  • 36
    • 52049096814 scopus 로고    scopus 로고
    • BRCT Domains: Phosphopeptide binding and signaling modules
    • Rodriguez, M. C. and Songyang, Z. (2008) BRCT Domains: Phosphopeptide binding and signaling modules Front. Biosci. 13, 5905-5915
    • (2008) Front. Biosci. , vol.13 , pp. 5905-5915
    • Rodriguez, M.C.1    Songyang, Z.2
  • 37
    • 79961117807 scopus 로고    scopus 로고
    • BRCT domains: Easy as one, two, three
    • Leung, C. C. and Glover, J. N. (2011) BRCT domains: Easy as one, two, three Cell Cycle 10 (15) 2461-2470
    • (2011) Cell Cycle , vol.10 , Issue.15 , pp. 2461-2470
    • Leung, C.C.1    Glover, J.N.2
  • 38
    • 80053585038 scopus 로고    scopus 로고
    • Functional Evolution of BRCT Domains from Binding DNA to Protein
    • Sheng, Z. Z., Zhao, Y. Q., and Huang, J. F. (2011) Functional Evolution of BRCT Domains from Binding DNA to Protein Evol. Bioinf. Online 7, 87-97
    • (2011) Evol. Bioinf. Online , vol.7 , pp. 87-97
    • Sheng, Z.Z.1    Zhao, Y.Q.2    Huang, J.F.3
  • 39
    • 0142147272 scopus 로고    scopus 로고
    • The BRCT domain is a phospho-protein binding domain
    • Yu, X. C. 2003, The BRCT domain is a phospho-protein binding domain Science 302 (5645) 639-642
    • (2003) Science , vol.302 , Issue.5645 , pp. 639-642
    • Yu, X.C.1
  • 40
    • 80051819993 scopus 로고    scopus 로고
    • The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes
    • de Groote, F. H. 2011, The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes DNA Repair 10 (9) 915-925
    • (2011) DNA Repair , vol.10 , Issue.9 , pp. 915-925
    • De Groote, F.H.1
  • 41
    • 36348982676 scopus 로고    scopus 로고
    • Pre-steady-state kinetic studies of protein-template-directed nucleotide incorporation by the yeast rev1 protein
    • Howell, C. A., Prakash, S., and Washington, M. T. (2007) Pre-steady-state kinetic studies of protein-template-directed nucleotide incorporation by the yeast rev1 protein Biochemistry 46, 13451-13459
    • (2007) Biochemistry , vol.46 , pp. 13451-13459
    • Howell, C.A.1    Prakash, S.2    Washington, M.T.3
  • 42
    • 25844440534 scopus 로고    scopus 로고
    • Rev1 employs a novel mechanism of DNA synthesis using a protein template
    • Nair, D. T. 2005, Rev1 employs a novel mechanism of DNA synthesis using a protein template Science 309 (5744) 2219-2222
    • (2005) Science , vol.309 , Issue.5744 , pp. 2219-2222
    • Nair, D.T.1
  • 43
    • 76449106188 scopus 로고    scopus 로고
    • Integration, scaling, space-group assignment and post-refinement
    • Kabsch, W. (2010) Integration, scaling, space-group assignment and post-refinement Acta Crystallogr. D66, 133-144
    • (2010) Acta Crystallogr. , vol.66 , pp. 133-144
    • Kabsch, W.1
  • 44
    • 79953747244 scopus 로고    scopus 로고
    • An introduction to data reduction: Space-group determination, scaling and intensity statistics
    • Evans, P. R. (2011) An introduction to data reduction: Space-group determination, scaling and intensity statistics Acta Crystallogr. D67, 282-292
    • (2011) Acta Crystallogr. , vol.67 , pp. 282-292
    • Evans, P.R.1
  • 45
    • 0035788107 scopus 로고    scopus 로고
    • Pushing the boundaries of molecular replacement with maximum likelihood
    • Read, R. J. (2001) Pushing the boundaries of molecular replacement with maximum likelihood Acta Crystallogr. D57, 1373-1382
    • (2001) Acta Crystallogr. , vol.57 , pp. 1373-1382
    • Read, R.J.1
  • 46
    • 14244272868 scopus 로고    scopus 로고
    • PHENIX: Building new software for automated crystallographic structure determination
    • Adams, P. D. 2002, PHENIX: Building new software for automated crystallographic structure determination Acta Crystallogr. D58, 1948-1954
    • (2002) Acta Crystallogr. , vol.58 , pp. 1948-1954
    • Adams, P.D.1
  • 47
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley, P. and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics Acta Crystallogr. D60, 2126-2132
    • (2004) Acta Crystallogr. , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 48
    • 33645217822 scopus 로고    scopus 로고
    • Characterization of the DNA binding and structural properties of the BRCT region of human replication factor C p140 subunit
    • Kobayashi, M. 2006, Characterization of the DNA binding and structural properties of the BRCT region of human replication factor C p140 subunit J. Biol. Chem. 281 (7) 4308-4317
    • (2006) J. Biol. Chem. , vol.281 , Issue.7 , pp. 4308-4317
    • Kobayashi, M.1
  • 49
    • 77951220216 scopus 로고    scopus 로고
    • Structure of the DNA-bound BRCA1 C-terminal Region from Human Replication Factor C p140 and Model of the Protein-DNA Complex
    • Kobayashi, M. 2010, Structure of the DNA-bound BRCA1 C-terminal Region from Human Replication Factor C p140 and Model of the Protein-DNA Complex J. Biol. Chem. 285 (13) 10087-10097
    • (2010) J. Biol. Chem. , vol.285 , Issue.13 , pp. 10087-10097
    • Kobayashi, M.1
  • 50
    • 80053204232 scopus 로고    scopus 로고
    • The structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes
    • Cuneo, M. J. 2011, The structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes Nucleic Acids Res. 39 (17) 7816-7827
    • (2011) Nucleic Acids Res. , vol.39 , Issue.17 , pp. 7816-7827
    • Cuneo, M.J.1
  • 51
    • 46649092698 scopus 로고    scopus 로고
    • A comparison of BRCT domains involved in nonhomologous end-joining: Introducing the solution structure of the BRCT domain of polymerase λ
    • Mueller, G. A. 2008, A comparison of BRCT domains involved in nonhomologous end-joining: Introducing the solution structure of the BRCT domain of polymerase λ DNA Repair 7 (8) 1340-1351
    • (2008) DNA Repair , vol.7 , Issue.8 , pp. 1340-1351
    • Mueller, G.A.1
  • 52
    • 0034809456 scopus 로고    scopus 로고
    • Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1
    • Williams, R. S., Green, R., and Glover, J. N. M. (2001) Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1 Nat. Struct. Biol. 8 (10) 838-842
    • (2001) Nat. Struct. Biol. , vol.8 , Issue.10 , pp. 838-842
    • Williams, R.S.1    Green, R.2    Glover, J.N.M.3
  • 53
    • 0032476599 scopus 로고    scopus 로고
    • Structure of an XRCC1 BRCT domain: A new protein-protein interaction module
    • Zhang, X. D. 1998, Structure of an XRCC1 BRCT domain: A new protein-protein interaction module EMBO J. 17 (21) 6404-6411
    • (1998) EMBO J. , vol.17 , Issue.21 , pp. 6404-6411
    • Zhang, X.D.1
  • 54
    • 33847365771 scopus 로고    scopus 로고
    • The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing
    • Hoelzel, M. 2007, The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing Nucleic Acids Res. 35 (3) 789-800
    • (2007) Nucleic Acids Res. , vol.35 , Issue.3 , pp. 789-800
    • Hoelzel, M.1
  • 55
    • 23144436398 scopus 로고    scopus 로고
    • The FoldX web server: An online force field
    • Schymkowitz, J. 2005, The FoldX web server: An online force field Nucleic Acids Res. 33, W382-W388
    • (2005) Nucleic Acids Res. , vol.33
    • Schymkowitz, J.1
  • 56
    • 38949182319 scopus 로고    scopus 로고
    • Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast rev1 DNA polymerase
    • Nair, D. T. 2008, Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast rev1 DNA polymerase Structure 16 (2) 239-245
    • (2008) Structure , vol.16 , Issue.2 , pp. 239-245
    • Nair, D.T.1
  • 57
    • 79151470586 scopus 로고    scopus 로고
    • DNA Synthesis across an Abasic Lesion by Yeast Rev1 DNA Polymerase
    • Nair, D. T. 2011, DNA Synthesis across an Abasic Lesion by Yeast Rev1 DNA Polymerase J. Mol. Biol. 406 (1) 18-28
    • (2011) J. Mol. Biol. , vol.406 , Issue.1 , pp. 18-28
    • Nair, D.T.1
  • 58
    • 75949107942 scopus 로고    scopus 로고
    • Unconventional Ubiquitin Recognition by the Ubiquitin-Binding Motif within the y Family DNA Polymerases ι and Rev1
    • Bomar, M. G. 2010, Unconventional Ubiquitin Recognition by the Ubiquitin-Binding Motif within the Y Family DNA Polymerases ι and Rev1 Mol. Cell 37 (3) 408-417
    • (2010) Mol. Cell , vol.37 , Issue.3 , pp. 408-417
    • Bomar, M.G.1
  • 59
    • 33750304863 scopus 로고    scopus 로고
    • Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein-protein interactions
    • D'Souza, S. and Walker, G. C. (2006) Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein-protein interactions Mol. Cell. Biol. 26 (21) 8173-8182
    • (2006) Mol. Cell. Biol. , vol.26 , Issue.21 , pp. 8173-8182
    • D'Souza, S.1    Walker, G.C.2
  • 60
    • 78951481539 scopus 로고    scopus 로고
    • The DNA Polymerase Activity of Saccharomyces cerevisiae Rev1 Is Biologically Significant
    • Wiltrout, M. E. and Walker, G. C. (2011) The DNA Polymerase Activity of Saccharomyces cerevisiae Rev1 Is Biologically Significant Genetics 187 (1) 21-35
    • (2011) Genetics , vol.187 , Issue.1 , pp. 21-35
    • Wiltrout, M.E.1    Walker, G.C.2
  • 61
    • 71549165134 scopus 로고    scopus 로고
    • Budding Yeast Dbf4 Sequences Required for Cdc7 Kinase Activation and Identification of a Functional Relationship between the Dbf4 and Rev1 BRCT Domains
    • Harkins, V. 2009, Budding Yeast Dbf4 Sequences Required for Cdc7 Kinase Activation and Identification of a Functional Relationship Between the Dbf4 and Rev1 BRCT Domains Genetics 183 (4) 1269-1282
    • (2009) Genetics , vol.183 , Issue.4 , pp. 1269-1282
    • Harkins, V.1
  • 62
    • 84863419746 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Dbf4 Has Unique Fold Necessary for Interaction with Rad53 Kinase
    • Matthews, L. A. 2012, Saccharomyces cerevisiae Dbf4 Has Unique Fold Necessary for Interaction with Rad53 Kinase J. Biol. Chem. 287 (4) 2378-2387
    • (2012) J. Biol. Chem. , vol.287 , Issue.4 , pp. 2378-2387
    • Matthews, L.A.1
  • 63
    • 77957321478 scopus 로고    scopus 로고
    • Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae
    • Conde, F. 2010, Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae DNA Repair 9 (10) 1038-1049
    • (2010) DNA Repair , vol.9 , Issue.10 , pp. 1038-1049
    • Conde, F.1
  • 64
    • 33746162368 scopus 로고    scopus 로고
    • REV1 protein interacts with PCNA: Significance of the REV1 BRCT domain in vitro and in vivo
    • Guo, C. X. 2006, REV1 protein interacts with PCNA: Significance of the REV1 BRCT domain in vitro and in vivo Mol. Cell 23 (2) 265-271
    • (2006) Mol. Cell , vol.23 , Issue.2 , pp. 265-271
    • Guo, C.X.1
  • 65
    • 78049441698 scopus 로고    scopus 로고
    • Separate roles of structured and unstructured regions of Y-family DNA polymerases
    • In (McPherson, A. Ed.) Vol. pp, Academic Press, New York.
    • Ohmori, H., (2009) Separate roles of structured and unstructured regions of Y-family DNA polymerases. In Advances in Protein Chemistry and Structural Biology (McPherson, A., Ed.) Vol. 78, pp 99-146, Academic Press, New York.
    • (2009) Advances in Protein Chemistry and Structural Biology , vol.78 , pp. 99-146
    • Ohmori, H.1
  • 66
    • 34547117417 scopus 로고    scopus 로고
    • A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage
    • Wood, A., Garg, P., and Burgers, P. M. J. (2007) A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage J. Biol. Chem. 282 (28) 20256-20263
    • (2007) J. Biol. Chem. , vol.282 , Issue.28 , pp. 20256-20263
    • Wood, A.1    Garg, P.2    Burgers, P.M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.