메뉴 건너뛰기




Volumn 30, Issue SUPPL. 3, 2012, Pages 12-19

Inflammatory bowel disease: Dysfunction of autophagy?

Author keywords

Autophagy; Crohn's disease; Inflammatory bowel disease

Indexed keywords

BACTERIAL ANTIGEN; LEUCINE RICH REPEAT KINASE 2; NON RECEPTOR PROTEIN TYROSINE PHOSPHATASE 2;

EID: 84872095397     PISSN: 02572753     EISSN: 14219875     Source Type: Journal    
DOI: 10.1159/000342588     Document Type: Article
Times cited : (40)

References (48)
  • 1
    • 34547176642 scopus 로고    scopus 로고
    • Unravelling the pathogenesis of inflammatory bowel disease
    • DOI 10.1038/nature06005, PII NATURE06005
    • Xavier RJ, Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007;448:427-434. (Pubitemid 47123518)
    • (2007) Nature , vol.448 , Issue.7152 , pp. 427-434
    • Xavier, R.J.1    Podolsky, D.K.2
  • 2
    • 67249152713 scopus 로고    scopus 로고
    • Epithelial tight junctions in intestinal inflammation
    • Schulzke JD, Ploeger S, Amasheh M, et al: Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 2009;1165:294-300.
    • (2009) Ann N Y Acad Sci , vol.1165 , pp. 294-300
    • Schulzke, J.D.1    Ploeger, S.2    Amasheh, M.3
  • 3
    • 80655149205 scopus 로고    scopus 로고
    • New IBD genetics: Common pathways with other diseases
    • Lees CW, Barrett JC, Parkes M, et al: New IBD genetics: common pathways with other diseases. Gut 2011;60:1739-1753.
    • (2011) Gut , vol.60 , pp. 1739-1753
    • Lees, C.W.1    Barrett, J.C.2    Parkes, M.3
  • 4
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008;132:27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 5
    • 0035286734 scopus 로고    scopus 로고
    • Molecular dissection of autophagy: Two ubiquitin-like systems
    • DOI 10.1038/35056522
    • Ohsumi Y: Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001;2:211-216. (Pubitemid 33675746)
    • (2001) Nature Reviews Molecular Cell Biology , vol.2 , Issue.3 , pp. 211-216
    • Ohsumi, Y.1
  • 6
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • DOI 10.1038/nature06639, PII NATURE06639
    • Mizushima N, Levine B, Cuervo AM, et al: Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069-1075. (Pubitemid 351317450)
    • (2008) Nature , vol.451 , Issue.7182 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 7
    • 73849121209 scopus 로고    scopus 로고
    • NOD1 and NOD2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, Carneiro LA, Ramjeet M, et al: NOD1 and NOD2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010;11:55-62.
    • (2010) Nat Immunol , vol.11 , pp. 55-62
    • Travassos, L.H.1    Carneiro, L.A.2    Ramjeet, M.3
  • 8
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, Baker J, Brain O, et al: NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010;16:90-97.
    • (2010) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1    Baker, J.2    Brain, O.3
  • 10
    • 84862194557 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase nonreceptor type 2 regulates autophagosome formation in human intestinal cells
    • Scharl M, Wojtal KA, Becker HM, et al: Protein tyrosine phosphatase nonreceptor type 2 regulates autophagosome formation in human intestinal cells. Inflamm Bowel Dis 2012;18:1287-1302.
    • (2012) Inflamm Bowel Dis , vol.18 , pp. 1287-1302
    • Scharl, M.1    Wojtal, K.A.2    Becker, H.M.3
  • 12
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L, McPhee CK, Zheng L, et al: Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010;465:942-946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3
  • 13
    • 38049098543 scopus 로고    scopus 로고
    • The ATG12-ATG5 conjugate has a novel e3-like activity for protein lipidation in autophagy
    • Hanada T, Noda NN, Satomi Y, et al: The ATG12-ATG5 conjugate has a novel e3-like activity for protein lipidation in autophagy. J Biol Chem 2007;282:37298-37302.
    • (2007) J Biol Chem , vol.282 , pp. 37298-37302
    • Hanada, T.1    Noda, N.N.2    Satomi, Y.3
  • 14
    • 79955790354 scopus 로고    scopus 로고
    • G enetic variation in the autophagy gene ULK1 and risk of Crohn's disease
    • Henckaerts L, Cleynen I, Brinar M, et al: G enetic variation in the autophagy gene ULK1 and risk of Crohn's disease. Inflamm Bowel Dis 2011;17:1392-1397.
    • (2011) Inflamm Bowel Dis , vol.17 , pp. 1392-1397
    • Henckaerts, L.1    Cleynen, I.2    Brinar, M.3
  • 15
    • 0037166241 scopus 로고    scopus 로고
    • Formation of the ∼350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
    • DOI 10.1074/jbc.M111889200
    • Kuma A, Mizushima N, Ishihara N, et al: Formation of the approximately 350-kDa Apg12-Apg5. Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002;277:18619-18625. (Pubitemid 34952416)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.21 , pp. 18619-18625
    • Kuma, A.1    Mizushima, N.2    Ishihara, N.3    Ohsumi, Y.4
  • 17
    • 84969213492 scopus 로고    scopus 로고
    • The Wellcome Trust Case Control Consortium: Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls
    • The Wellcome Trust Case Control Consortium: Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 2007;447:661-678.
    • (2007) Nature , vol.447 , pp. 661-678
  • 19
    • 56249090667 scopus 로고    scopus 로고
    • Loss of t he autophagy protein ATG16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, et al: Loss of t he autophagy protein ATG16L1 enhances endotoxin-induced IL-1beta production. Nature 2008;456:264-268.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 20
    • 50449091647 scopus 로고    scopus 로고
    • Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease
    • McCarroll SA, Huett A, Kuballa P, et al: Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet 2008;40:1107-1112.
    • (2008) Nat Genet , vol.40 , pp. 1107-1112
    • McCarroll, S.A.1    Huett, A.2    Kuballa, P.3
  • 21
    • 77952515610 scopus 로고    scopus 로고
    • Independent and population-specific association of risk variants at the IRGM locus with Crohn's disease
    • Prescott NJ, Dominy KM, Kubo M, et al: Independent and population-specific association of risk variants at the IRGM locus with Crohn's disease. Hum Mol Genet 2010;19:1828-1839.
    • (2010) Hum Mol Genet , vol.19 , pp. 1828-1839
    • Prescott, N.J.1    Dominy, K.M.2    Kubo, M.3
  • 22
    • 0035898464 scopus 로고    scopus 로고
    • Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection
    • Collazo CM, Yap GS, Sempowski GD, et al: Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 2001;194:181-188.
    • (2001) J Exp Med , vol.194 , pp. 181-188
    • Collazo, C.M.1    Yap, G.S.2    Sempowski, G.D.3
  • 23
    • 70349991886 scopus 로고    scopus 로고
    • LRRK2 regulates autophagic act ivity a nd loca liz es to specif ic membra ne microdomains in a novel human genomic reporter cellular model
    • Alegre-Abarrategui J, Christian H, Lufino MM, et al: LRRK2 regulates autophagic act ivity a nd loca liz es to specif ic membra ne microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 2009;18:4022-4034.
    • (2009) Hum Mol Genet , vol.18 , pp. 4022-4034
    • Alegre-Abarrategui, J.1    Christian, H.2    Lufino, M.M.3
  • 24
    • 48349136889 scopus 로고    scopus 로고
    • Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease
    • Barrett JC, Hansoul S, Nicolae DL, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008;40:955-962.
    • (2008) Nat Genet , vol.40 , pp. 955-962
    • Barrett, J.C.1    Hansoul, S.2    Nicolae, D.L.3
  • 25
    • 80054933395 scopus 로고    scopus 로고
    • The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease
    • Liu Z, Lee J, Krummey S, et al: The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 2011;12:1063-1070.
    • (2011) Nat Immunol , vol.12 , pp. 1063-1070
    • Liu, Z.1    Lee, J.2    Krummey, S.3
  • 26
    • 78149473340 scopus 로고    scopus 로고
    • LRRK2 is involved in the IFN-gamma response and host response to pathogens
    • Gardet A, Benita Y, Li C, et al: LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 2010;185:5577-5585.
    • (2010) J Immunol , vol.185 , pp. 5577-5585
    • Gardet, A.1    Benita, Y.2    Li, C.3
  • 27
    • 77649194674 scopus 로고    scopus 로고
    • Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly
    • Lapaquette P, Glasser AL, Huett A, et al: Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cel l Microbiol 2010;12:99-113.
    • (2010) Cel L Microbiol , vol.12 , pp. 99-113
    • Lapaquette, P.1    Glasser, A.L.2    Huett, A.3
  • 28
    • 84861186087 scopus 로고    scopus 로고
    • Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response
    • Lapaquette P, Bringer MA, Darfeuille-Michaud A: Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol 2012;14:791-807.
    • (2012) Cell Microbiol , vol.14 , pp. 791-807
    • Lapaquette, P.1    Bringer, M.A.2    Darfeuille-Michaud, A.3
  • 29
    • 80053625777 scopus 로고    scopus 로고
    • Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response
    • Kleinnijenhuis J, Oosting M, Plantinga TS, et al: Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunolog y 2011;134:341-348.
    • (2011) Immunolog y , vol.134 , pp. 341-348
    • Kleinnijenhuis, J.1    Oosting, M.2    Plantinga, T.S.3
  • 30
    • 54849421128 scopus 로고    scopus 로고
    • Impaired autophagy of an intracellular pathogen induced by a Crohn's disease-associated ATG16L1 variant
    • Kuballa P, Huett A, Rioux JD, et al: Impaired autophagy of an intracellular pathogen induced by a Crohn's disease-associated ATG16L1 variant. PLoS One 2008;3:e3391.
    • (2008) PLoS One , vol.3
    • Kuballa, P.1    Huett, A.2    Rioux, J.D.3
  • 31
    • 0142240338 scopus 로고    scopus 로고
    • Immune Control of Tuberculosis by IFN-γ-inducible LRG-47
    • DOI 10.1126/science.1088063
    • MacMicking JD, Taylor GA, McKinney JD: Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 2003;302:654-659. (Pubitemid 37310923)
    • (2003) Science , vol.302 , Issue.5645 , pp. 654-659
    • MacMicking, J.D.1    Taylor, G.A.2    McKinney, J.D.3
  • 32
    • 38449116497 scopus 로고    scopus 로고
    • Impaired macrophage function underscores susceptibility to Salmonella in mice lacking IRGM1 (LRG-47)
    • Henry SC, Daniell X, Indaram M, et al: Impaired macrophage function underscores susceptibility to Salmonella in mice lacking IRGM1 (LRG-47). J Immunol 2007;179:6963-6972.
    • (2007) J Immunol , vol.179 , pp. 6963-6972
    • Henry, S.C.1    Daniell, X.2    Indaram, M.3
  • 33
    • 33748506089 scopus 로고    scopus 로고
    • Human IRGM induces autophagy to eliminate intracellular mycobacteria
    • DOI 10.1126/science.1129577
    • Singh SB, Davis AS, Taylor GA, et al: Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006;313:1438-1441. (Pubitemid 44360272)
    • (2006) Science , vol.313 , Issue.5792 , pp. 1438-1441
    • Singh, S.B.1    Davis, A.S.2    Taylor, G.A.3    Deretic, V.4
  • 34
    • 70349672696 scopus 로고    scopus 로고
    • Autophagy gene variant IRGM-261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains
    • Intemann CD, Thye T, Niemann S, et al: Autophagy gene variant IRGM-261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 2009;5:e1000577.
    • (2009) PLoS Pathog , vol.5
    • Intemann, C.D.1    Thye, T.2    Niemann, S.3
  • 35
    • 79952134938 scopus 로고    scopus 로고
    • A synonymous variant in IRGM alters a binding site for MIR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease
    • Brest P, Lapaquette P, Souidi M, et al: A synonymous variant in IRGM alters a binding site for MIR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 2011;43:242-245.
    • (2011) Nat Genet , vol.43 , pp. 242-245
    • Brest, P.1    Lapaquette, P.2    Souidi, M.3
  • 36
    • 78649833818 scopus 로고    scopus 로고
    • Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria
    • Singh SB, Ornatowski W, Vergne I, et al: Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 2010;12:1154-1165.
    • (2010) Nat Cell Biol , vol.12 , pp. 1154-1165
    • Singh, S.B.1    Ornatowski, W.2    Vergne, I.3
  • 37
    • 84865046984 scopus 로고    scopus 로고
    • Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn's disease
    • Murdoch TB, Xu W, Stempak JM, et al: Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn's disease. Inflamm Bowel Dis 2012;18:1743-1748.
    • (2012) Inflamm Bowel Dis , vol.18 , pp. 1743-1748
    • Murdoch, T.B.1    Xu, W.2    Stempak, J.M.3
  • 41
    • 77957047689 scopus 로고    scopus 로고
    • Induction and rescue of NOD2-dependent Th1-driven granulomatous inflammation of the ileum
    • Biswas A, Liu YJ, Hao L, et al: Induction and rescue of NOD2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci USA 2010;107:14739-14744.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 14739-14744
    • Biswas, A.1    Liu, Y.J.2    Hao, L.3
  • 42
    • 77957682295 scopus 로고    scopus 로고
    • A TG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
    • 1641 e1631-1632
    • Homer CR, Richmond AL, Rebert NA, et al: A TG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 2010;139:1630-1641, 1641 e1631-1632.
    • (2010) Gastroenterology , vol.139 , pp. 1630-1641
    • Homer, C.R.1    Richmond, A.L.2    Rebert, N.A.3
  • 43
    • 80051550866 scopus 로고    scopus 로고
    • Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2
    • Plantinga TS, Crisan TO, Oosting M, et al: Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 2011;60:1229-1235.
    • (2011) Gut , vol.60 , pp. 1229-1235
    • Plantinga, T.S.1    Crisan, T.O.2    Oosting, M.3
  • 44
    • 84055191105 scopus 로고    scopus 로고
    • Unraveling the functional implications of GWAS: How T cell protein tyrosine phosphatase drives autoimmune disease
    • Zikherman J, Weiss A: Unraveling the functional implications of GWAS: How T cell protein tyrosine phosphatase drives autoimmune disease. J Clin Invest 2011;121:4618-4621.
    • (2011) J Clin Invest , vol.121 , pp. 4618-4621
    • Zikherman, J.1    Weiss, A.2
  • 45
    • 84858683881 scopus 로고    scopus 로고
    • Crohn's disease-associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cytokine secretion and autophag y
    • Scharl M, Mwinyi J, Fischbeck A, et al: Crohn's disease-associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cytokine secretion and autophag y. Inf lamm Bowel Dis 2012;18:900-912.
    • (2012) Inf Lamm Bowel Dis , vol.18 , pp. 900-912
    • Scharl, M.1    Mwinyi, J.2    Fischbeck, A.3
  • 46
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene ATG16L1 in mouse and human intestinal paneth cells
    • Cadwell K, Liu JY, Brown SL, et al: A key role for autophagy and the autophagy gene ATG16L1 in mouse and human intestinal paneth cells. Nature 2008;456:259-263.
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1    Liu, J.Y.2    Brown, S.L.3
  • 47
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene ATG16L1 phenotypes in intestine
    • Cadwell K, Patel KK, Maloney NS, et al: Virus-plus-susceptibility gene interaction determines Crohn's disease gene ATG16L1 phenotypes in intestine. Cell 2010;141:1135-1145.
    • (2010) Cell , vol.141 , pp. 1135-1145
    • Cadwell, K.1    Patel, K.K.2    Maloney, N.S.3
  • 48
    • 84855293818 scopus 로고    scopus 로고
    • IRGM is a common target of RNA viruses that subvert the autophagy network
    • Gregoire IP, Richetta C, Meyniel-Schicklin L, et al: IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog 2011;7:e1002422.
    • (2011) PLoS Pathog , vol.7
    • Gregoire, I.P.1    Richetta, C.2    Meyniel-Schicklin, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.