메뉴 건너뛰기




Volumn 40, Issue , 2013, Pages 245-254

Supervised pre-processing approaches in multiple class variables classification for fish recruitment forecasting

Author keywords

Bayesian networks; Discretization; Environmental modelling; Feature subset selection; Missing imputation; Multi dimensional classification; Recruitment forecasting; Supervised classification

Indexed keywords

DISCRETIZATIONS; ENVIRONMENTAL MODELLING; FEATURE SUBSET SELECTION; MISSING IMPUTATION; SUPERVISED CLASSIFICATION;

EID: 84871748990     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2012.10.001     Document Type: Article
Times cited : (27)

References (85)
  • 2
    • 79955912425 scopus 로고    scopus 로고
    • Hybrid Bayesian network classifiers: application to species distribution models
    • Aguilera P., Fernández A., Reche F., Rumí R. Hybrid Bayesian network classifiers: application to species distribution models. Environ. Model. Softw. 2010, 25(12):1630-1639.
    • (2010) Environ. Model. Softw. , vol.25 , Issue.12 , pp. 1630-1639
    • Aguilera, P.1    Fernández, A.2    Reche, F.3    Rumí, R.4
  • 3
    • 30344483921 scopus 로고    scopus 로고
    • On learning algorithm selection for classification
    • Ali S., Smith K. On learning algorithm selection for classification. Appl. Soft. Comput. 2006, 6(2):119-138.
    • (2006) Appl. Soft. Comput. , vol.6 , Issue.2 , pp. 119-138
    • Ali, S.1    Smith, K.2
  • 4
    • 79959505031 scopus 로고    scopus 로고
    • The potential use of a gadget model to predict stock responses to climate change in combination with Bayesian networks: the case of bay of biscay anchovy
    • Andonegi E., Fernandes J., Quincoces I., Irigoien X., Uriarte A., Pérez A., Howell D., Stefánsson G. The potential use of a gadget model to predict stock responses to climate change in combination with Bayesian networks: the case of bay of biscay anchovy. ICES J. Mar. Sci. 2011, 68(6):1257-1269.
    • (2011) ICES J. Mar. Sci. , vol.68 , Issue.6 , pp. 1257-1269
    • Andonegi, E.1    Fernandes, J.2    Quincoces, I.3    Irigoien, X.4    Uriarte, A.5    Pérez, A.6    Howell, D.7    Stefánsson, G.8
  • 5
    • 14844325200 scopus 로고    scopus 로고
    • Obligations to protect marine ecosystems under international conventions and other legal instruments
    • FAO Rome and CABI Publishing, M. Sinclair, G. Valdimarsson (Eds.)
    • Aqorau T. Obligations to protect marine ecosystems under international conventions and other legal instruments. Responsible Fisheries in the Marine Ecosystem 2003, 25-40. FAO Rome and CABI Publishing. M. Sinclair, G. Valdimarsson (Eds.).
    • (2003) Responsible Fisheries in the Marine Ecosystem , pp. 25-40
    • Aqorau, T.1
  • 6
    • 78049456545 scopus 로고    scopus 로고
    • Machine learning approach to predict sediment load - a case study
    • Azamathulla H., Ghani A., Chang C., Hasan Z., Zakaria N. Machine learning approach to predict sediment load - a case study. CLEAN 2010, 38(10):969-976.
    • (2010) CLEAN , vol.38 , Issue.10 , pp. 969-976
    • Azamathulla, H.1    Ghani, A.2    Chang, C.3    Hasan, Z.4    Zakaria, N.5
  • 7
    • 78751638074 scopus 로고    scopus 로고
    • Support vector machine approach for longitudinal dispersion coefficients in natural streams
    • Azamathulla H., Wu F. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl. Soft Comput. 2011, 11(2):2902-2905.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2902-2905
    • Azamathulla, H.1    Wu, F.2
  • 8
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of K-fold cross-validation
    • Bengio Y., Grandvalet Y. No unbiased estimator of the variance of K-fold cross-validation. J. Mach. Learn. Res. 2004, 5:1089-1105.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 9
    • 79953815734 scopus 로고    scopus 로고
    • Multi-dimensional Classification with Bayesian Networks
    • Technical Report, Department of Artificial Intelligence, Polytechnic University of Madrid, UPM-FI/DIA/2010-1, Madrid, Spain.
    • Bielza, C., Li, G., Larrañaga, P., 2010. Multi-dimensional Classification with Bayesian Networks. Technical Report, Department of Artificial Intelligence, Polytechnic University of Madrid, UPM-FI/DIA/2010-1, Madrid, Spain.
    • (2010)
    • Bielza, C.1    Li, G.2    Larrañaga, P.3
  • 10
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with Bayesian networks
    • Bielza C., Li G., Larranaga P. Multi-dimensional classification with Bayesian networks. Int. J. Approx. Reason 2011, 52(6):705-727.
    • (2011) Int. J. Approx. Reason , vol.52 , Issue.6 , pp. 705-727
    • Bielza, C.1    Li, G.2    Larranaga, P.3
  • 11
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian networks in the space of structures by estimation of distribution algorithms
    • Blanco R., Inza I., Larrañaga P. Learning Bayesian networks in the space of structures by estimation of distribution algorithms. Int. J. Intell. Syst. 2003, 18(2):205-220.
    • (2003) Int. J. Intell. Syst. , vol.18 , Issue.2 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larrañaga, P.3
  • 12
    • 0030851007 scopus 로고    scopus 로고
    • The management of fisheries and marine ecosystems
    • Botsford L., Castilla J., Peterson C. The management of fisheries and marine ecosystems. Science 1997, 277(5325):509-515.
    • (1997) Science , vol.277 , Issue.5325 , pp. 509-515
    • Botsford, L.1    Castilla, J.2    Peterson, C.3
  • 13
    • 7444237797 scopus 로고    scopus 로고
    • Evaluating the replicability of significance tests for comparing learning algorithms
    • Bouckaert R.R., Frank E. Evaluating the replicability of significance tests for comparing learning algorithms. Lect. Notes Comput. Sci. 2004, 3-12.
    • (2004) Lect. Notes Comput. Sci. , pp. 3-12
    • Bouckaert, R.R.1    Frank, E.2
  • 14
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78(1):1-3.
    • (1950) Mon. Weather Rev. , vol.78 , Issue.1 , pp. 1-3
    • Brier, G.W.1
  • 15
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • Caruana R. Multi-task learning. Mach. Learn. 1997, 28:41-75.
    • (1997) Mach. Learn. , vol.28 , pp. 41-75
    • Caruana, R.1
  • 18
    • 84861920466 scopus 로고    scopus 로고
    • Good practice in Bayesian network modelling
    • Chen S., Pollino C. Good practice in Bayesian network modelling. Environ. Model. Softw. 2012, 37:134-145.
    • (2012) Environ. Model. Softw. , vol.37 , pp. 134-145
    • Chen, S.1    Pollino, C.2
  • 19
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
    • Correa M., Bielza C., Pamies-Teixeira J. Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 2009, 36(3):7270-7279.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 7270-7279
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 20
    • 1942485570 scopus 로고    scopus 로고
    • The functioning of marine ecosystems: a fisheries perspective
    • FAO Rome and CABI Publishing, M. Sinclair, G. Valdimarsson (Eds.)
    • Cury P., Shannon L., Shin Y. The functioning of marine ecosystems: a fisheries perspective. Responsible Fisheries in the Marine Ecosystem 2003, 343-361. FAO Rome and CABI Publishing. M. Sinclair, G. Valdimarsson (Eds.).
    • (2003) Responsible Fisheries in the Marine Ecosystem , pp. 343-361
    • Cury, P.1    Shannon, L.2    Shin, Y.3
  • 21
    • 31844433245 scopus 로고    scopus 로고
    • Learning as search optimization: approximate large margin methods for structured prediction
    • Daumé H., Marcu D. Learning as search optimization: approximate large margin methods for structured prediction. International Conference in Machine Learning 2005, 169-176.
    • (2005) International Conference in Machine Learning , pp. 169-176
    • Daumé, H.1    Marcu, D.2
  • 22
    • 38049160416 scopus 로고    scopus 로고
    • Inference and learning in multi-dimensional Bayesian network classifiers
    • de Waal P.R., van der Gaag L.C. Inference and learning in multi-dimensional Bayesian network classifiers. Lect. Notes Comput. Sci. 2007, 4724:501-511.
    • (2007) Lect. Notes Comput. Sci. , vol.4724 , pp. 501-511
    • de Waal, P.R.1    van der Gaag, L.C.2
  • 24
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Dem̌sar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Dem̌sar, J.1
  • 25
    • 34047231224 scopus 로고    scopus 로고
    • Recruitment prediction with genetic algorithms with application to the Pacific Herring fishery
    • Dreyfus-León M., Chen D.G. Recruitment prediction with genetic algorithms with application to the Pacific Herring fishery. Ecol. Model. 2007, 203(1-2):141-146.
    • (2007) Ecol. Model. , vol.203 , Issue.1-2 , pp. 141-146
    • Dreyfus-León, M.1    Chen, D.G.2
  • 26
    • 3543120716 scopus 로고    scopus 로고
    • Portfolio management of wild fish stocks
    • Edwards S.F., Link J.S., Rountree B.P. Portfolio management of wild fish stocks. Ecol. Econ. 2004, 49(3):317-329.
    • (2004) Ecol. Econ. , vol.49 , Issue.3 , pp. 317-329
    • Edwards, S.F.1    Link, J.S.2    Rountree, B.P.3
  • 27
    • 0035283306 scopus 로고    scopus 로고
    • The precautionary approach in fisheries management: the devil is in the details
    • Essington T.E. The precautionary approach in fisheries management: the devil is in the details. Trends Ecol. Evol. 2001, 16(3):121-122.
    • (2001) Trends Ecol. Evol. , vol.16 , Issue.3 , pp. 121-122
    • Essington, T.E.1
  • 29
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: an overview
    • AAAI/MIT. American Association for Artificial Intelligence Menlo Park, CA, USA, U.M. Fayyad (Ed.)
    • Fayyad U.M., Piatetsky-Shapiro G., Smyth P. From data mining to knowledge discovery: an overview. Advances in Knowledge Discovery and Data Mining 1996, 1-24. AAAI/MIT. American Association for Artificial Intelligence Menlo Park, CA, USA. U.M. Fayyad (Ed.).
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 1-24
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 31
    • 57749188641 scopus 로고    scopus 로고
    • Optimizing the number of classes in automated zooplankton classification
    • Fernandes J.A., Irigoien X., Boyra G., Lozano J.A., Inza I. Optimizing the number of classes in automated zooplankton classification. J. Plankton Res. 2009, 31(1):19-29.
    • (2009) J. Plankton Res. , vol.31 , Issue.1 , pp. 19-29
    • Fernandes, J.A.1    Irigoien, X.2    Boyra, G.3    Lozano, J.A.4    Inza, I.5
  • 34
    • 0029667244 scopus 로고    scopus 로고
    • Cannibalism and predation on fish larvae by larvae of Atlantic mackerel, Scomber scombrus: trophodynamics and potential impact on recruitment
    • Fortier L., Villeneuve A. Cannibalism and predation on fish larvae by larvae of Atlantic mackerel, Scomber scombrus: trophodynamics and potential impact on recruitment. Fish. Bull. 1996, 94(2):268-281.
    • (1996) Fish. Bull. , vol.94 , Issue.2 , pp. 268-281
    • Fortier, L.1    Villeneuve, A.2
  • 36
    • 17044418147 scopus 로고    scopus 로고
    • Ecosystem approach to fisheries: a review of implementation guidelines
    • García S., Cochrane K. Ecosystem approach to fisheries: a review of implementation guidelines. ICES J. Mar. Sci. 2005, 62(3):311-318.
    • (2005) ICES J. Mar. Sci. , vol.62 , Issue.3 , pp. 311-318
    • García, S.1    Cochrane, K.2
  • 37
    • 58149287952 scopus 로고    scopus 로고
    • An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons
    • García S., Herrera F. An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 40
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based Feature Selection for Machine Learning
    • Ph.D. thesis, Waikato University, New Zealand.
    • Hall, M.A., 1999. Correlation-based Feature Selection for Machine Learning. Ph.D. thesis, Waikato University, New Zealand.
    • (1999)
    • Hall, M.A.1
  • 43
    • 0033749711 scopus 로고    scopus 로고
    • Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems?
    • Hollowed A.B., Bax N., Beamish R., Collie J., Fogarty M., Livingston P., Pope J., Rice J.C. Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems?. ICES J. Mar. Sci. 2000, 57(3):707-719.
    • (2000) ICES J. Mar. Sci. , vol.57 , Issue.3 , pp. 707-719
    • Hollowed, A.B.1    Bax, N.2    Beamish, R.3    Collie, J.4    Fogarty, M.5    Livingston, P.6    Pope, J.7    Rice, J.C.8
  • 44
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimensional data
    • Hua J., Temble W.D., Dougherty E.R. Performance of feature-selection methods in the classification of high-dimensional data. Pattern Recogn. 2009, 42:409-424.
    • (2009) Pattern Recogn. , vol.42 , pp. 409-424
    • Hua, J.1    Temble, W.D.2    Dougherty, E.R.3
  • 45
    • 44649101462 scopus 로고    scopus 로고
    • A two-stage biomass dynamic model for Bay of Biscay anchovy: a Bayesian approach
    • Ibaibarriaga L., Fernandez C., Uriarte A., Roel B. A two-stage biomass dynamic model for Bay of Biscay anchovy: a Bayesian approach. ICES J. Mar. Sci. 2008, 65(2):191-205.
    • (2008) ICES J. Mar. Sci. , vol.65 , Issue.2 , pp. 191-205
    • Ibaibarriaga, L.1    Fernandez, C.2    Uriarte, A.3    Roel, B.4
  • 46
    • 0342902635 scopus 로고    scopus 로고
    • Representing the behaviour of supervised classification learning algorithms by Bayesian networks
    • Inza I., Larrañaga P., Sierra B., Etxeberria R., Lozano J.A., Peña J.M. Representing the behaviour of supervised classification learning algorithms by Bayesian networks. Pattern Recogn. Lett. 1999, 20(11-13):1201-1209.
    • (1999) Pattern Recogn. Lett. , vol.20 , Issue.11-13 , pp. 1201-1209
    • Inza, I.1    Larrañaga, P.2    Sierra, B.3    Etxeberria, R.4    Lozano, J.A.5    Peña, J.M.6
  • 47
    • 33749616427 scopus 로고    scopus 로고
    • Reply to Horizons Article 'Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers' Flynn (2005). Shiny mathematical castles built on grey biological sands
    • Irigoien X. Reply to Horizons Article 'Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers' Flynn (2005). Shiny mathematical castles built on grey biological sands. J. Plankton Res. 2006, 28(10):965.
    • (2006) J. Plankton Res. , vol.28 , Issue.10 , pp. 965
    • Irigoien, X.1
  • 48
    • 79960573950 scopus 로고    scopus 로고
    • The role of intraguild predation in the population dynamics of small pelagic fish
    • Irigoien X., de Roos A. The role of intraguild predation in the population dynamics of small pelagic fish. Mar. Biol. 2011, 158(8):1683-1690.
    • (2011) Mar. Biol. , vol.158 , Issue.8 , pp. 1683-1690
    • Irigoien, X.1    de Roos, A.2
  • 53
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: a review of classification techniques
    • Kotsiantis S. Supervised machine learning: a review of classification techniques. Informatica 2007, 31:249-268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.1
  • 55
    • 0028607788 scopus 로고
    • Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages?
    • Leggett W.C., Deblois E. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages?. Neth. J. Sea Res. 1994, 32(2):119-134.
    • (1994) Neth. J. Sea Res. , vol.32 , Issue.2 , pp. 119-134
    • Leggett, W.C.1    Deblois, E.2
  • 57
    • 69249219130 scopus 로고    scopus 로고
    • Developing monthly operating rules for a cascade system of reservoirs: application of Bayesian Networks
    • Malekmohammadi P., Kerachian R., Zahraie B. Developing monthly operating rules for a cascade system of reservoirs: application of Bayesian Networks. Environ. Model. Softw. 2009, 24(12):1420-1432.
    • (2009) Environ. Model. Softw. , vol.24 , Issue.12 , pp. 1420-1432
    • Malekmohammadi, P.1    Kerachian, R.2    Zahraie, B.3
  • 58
    • 0030619241 scopus 로고    scopus 로고
    • Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm
    • McAllister M.K., Ianelli J.N. Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Can. J. Fish. Aquat. Sci. 1997, 54(2):284-300.
    • (1997) Can. J. Fish. Aquat. Sci. , vol.54 , Issue.2 , pp. 284-300
    • McAllister, M.K.1    Ianelli, J.N.2
  • 59
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., Bengio Y. Inference for the generalization error. Mach. Learn. 2003, 52(3):239-281.
    • (2003) Mach. Learn. , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 60
    • 79955906383 scopus 로고    scopus 로고
    • Using Monte-Carlo simulations and Bayesian networks to quantify and demonstrate the impact of fertiliser best management practices
    • Nash D., Hannah M. Using Monte-Carlo simulations and Bayesian networks to quantify and demonstrate the impact of fertiliser best management practices. Environ. Model. Softw. 2011, 26(9):1079-1088.
    • (2011) Environ. Model. Softw. , vol.26 , Issue.9 , pp. 1079-1088
    • Nash, D.1    Hannah, M.2
  • 62
    • 33750707631 scopus 로고    scopus 로고
    • Information theory and classification error in probabilistic classifiers
    • Pérez A., Larrañaga P., Inza I. Information theory and classification error in probabilistic classifiers. Lect. Notes Comput. Sc 2006, 4265:347-351.
    • (2006) Lect. Notes Comput. Sc , vol.4265 , pp. 347-351
    • Pérez, A.1    Larrañaga, P.2    Inza, I.3
  • 63
    • 43249107737 scopus 로고    scopus 로고
    • Quantile regression models for fish recruitment-environment relationships: four case studies
    • Planque B., Buffaz L. Quantile regression models for fish recruitment-environment relationships: four case studies. Mar. Ecol. Progr. Ser. 2008, 357:213-223.
    • (2008) Mar. Ecol. Progr. Ser. , vol.357 , pp. 213-223
    • Planque, B.1    Buffaz, L.2
  • 64
    • 80052965571 scopus 로고    scopus 로고
    • Multilabel classifiers with a probabilistic thresholding strategy
    • Quevedo J., Luaces O.,A.,B. Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn. 2011, 45(2):876-883.
    • (2011) Pattern Recogn. , vol.45 , Issue.2 , pp. 876-883
    • Quevedo, J.1    Luaces, O.A.B.2
  • 65
    • 0000468809 scopus 로고
    • Harvest policies and nonmarket valuation in a predator-prey system
    • Ragozin D.L., Brown G. Harvest policies and nonmarket valuation in a predator-prey system. J. Environ. Econ. Manage. 1985, 12(2):155-168.
    • (1985) J. Environ. Econ. Manage. , vol.12 , Issue.2 , pp. 155-168
    • Ragozin, D.L.1    Brown, G.2
  • 66
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. J. Mach. Learn. Res. 2003, 3:1371-1382.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 68
    • 0000001719 scopus 로고
    • Handbook of Computations for Biological Statistics of Fish Populations
    • Ricker W.E. Handbook of Computations for Biological Statistics of Fish Populations. Fish. Res. Bd. Canada Bull. 119 1958, 300 pp.
    • (1958) Fish. Res. Bd. Canada Bull. 119 , pp. 300
    • Ricker, W.E.1
  • 69
  • 71
    • 85008025524 scopus 로고    scopus 로고
    • Sensitivity analysis of k-fold cross-validation in prediction error estimation
    • Rodríguez J.D., Pérez A., Lozano J.A. Sensitivity analysis of k-fold cross-validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32(3):569-575.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.3 , pp. 569-575
    • Rodríguez, J.D.1    Pérez, A.2    Lozano, J.A.3
  • 72
    • 38749083774 scopus 로고    scopus 로고
    • Marine ecosystem-based management in practice: scientific and governance challenges
    • Ruckelshaus M., Klinger T., Knowlton N., de Master D. Marine ecosystem-based management in practice: scientific and governance challenges. Bioscience 2008, 58(1):53-63.
    • (2008) Bioscience , vol.58 , Issue.1 , pp. 53-63
    • Ruckelshaus, M.1    Klinger, T.2    Knowlton, N.3    de Master, D.4
  • 73
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 74
    • 33645087369 scopus 로고    scopus 로고
    • Interannual changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions within the California Current System
    • Schirripa M.J., Colbert J.J. Interannual changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions within the California Current System. Fish. Oceanogr. 2006, 15(1):25-36.
    • (2006) Fish. Oceanogr. , vol.15 , Issue.1 , pp. 25-36
    • Schirripa, M.J.1    Colbert, J.J.2
  • 76
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21(5):631-643.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 79
    • 82755174160 scopus 로고    scopus 로고
    • Bioinformatics tools in predictive ecology: applications to fisheries
    • Tucker A., Duplisea D. Bioinformatics tools in predictive ecology: applications to fisheries. Phil. Trans. R. Soc. B 2012, 367(1586):279-290.
    • (2012) Phil. Trans. R. Soc. B , vol.367 , Issue.1586 , pp. 279-290
    • Tucker, A.1    Duplisea, D.2
  • 80
    • 34047185270 scopus 로고    scopus 로고
    • Advantages and challenges of Bayesian networks in environmental modelling
    • Uusitalo L. Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Model. 2007, 203(3-4):312-318.
    • (2007) Ecol. Model. , vol.203 , Issue.3-4 , pp. 312-318
    • Uusitalo, L.1
  • 84
    • 79957838308 scopus 로고    scopus 로고
    • Modeling net ecosystem metabolism with an artificial neural network and Bayesian belief network
    • Young W., Millie D., Weckman G., Anderson J., Klarer D., Fahnenstiel G. Modeling net ecosystem metabolism with an artificial neural network and Bayesian belief network. Environ. Model. Softw. 2011, 26(10):1199-1210.
    • (2011) Environ. Model. Softw. , vol.26 , Issue.10 , pp. 1199-1210
    • Young, W.1    Millie, D.2    Weckman, G.3    Anderson, J.4    Klarer, D.5    Fahnenstiel, G.6
  • 85
    • 80052392613 scopus 로고    scopus 로고
    • A two-step method to learn multidimensional Bayesian network classifiers based on mutual information measures
    • Zaragoza J., Sucar L., Morales E. A two-step method to learn multidimensional Bayesian network classifiers based on mutual information measures. Twenty-fourth International FLAIRS Conference 2011.
    • (2011) Twenty-fourth International FLAIRS Conference
    • Zaragoza, J.1    Sucar, L.2    Morales, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.