메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1089-1105

No unbiased estimator of the variance of K-fold cross-validation

Author keywords

Cross validation; K fold cross validation; Statistical comparisons of algorithms; Variance estimators

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COVARIANCE MATRIX; DEGREES OF FREEDOM (MECHANICS); EIGENVALUES AND EIGENFUNCTIONS; LEARNING SYSTEMS;

EID: 84925604888     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (876)

References (13)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2 cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin. Combined 5×2 cv F test for comparing supervised classification learning algorithms. Neural Computation, 11(8):1885-1892, 1999.
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 4
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman. Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24(6):2350-2383, 1996.
    • (1996) The Annals of Statistics , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 5
    • 4043168147 scopus 로고    scopus 로고
    • Prequential analysis
    • S. Kotz, C. B. Read, and D. L. Banks, editors, Wiley-Interscience
    • A. P. Dawid. Prequential analysis. In S. Kotz, C. B. Read, and D. L. Banks, editors, Encyclopedia of Statistical Sciences, Update Volume 1, pages 464-470. Wiley-Interscience, 1997.
    • (1997) Encyclopedia of Statistical Sciences, Update , vol.1 , pp. 464-470
    • Dawid, A.P.1
  • 7
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1924, 1999.
    • (1999) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 10
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out crossvalidation
    • M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out crossvalidation. Neural Computation, 11(6):1427-1453, 1996.
    • (1996) Neural Computation , vol.11 , Issue.6 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 12
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning, 52(3):239-281, 2003.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 13
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, B, 36(1):111-147, 1974.
    • (1974) Journal of the Royal Statistical Society, B , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.