메뉴 건너뛰기




Volumn , Issue , 2005, Pages 169-176

Learning as search optimization: Approximate large margin methods for structured prediction

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CONFORMAL MAPPING; LEARNING ALGORITHMS; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION; SEARCH ENGINES;

EID: 31844433245     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (200)

References (32)
  • 1
    • 14344257912 scopus 로고    scopus 로고
    • Gaussian process classification for segmenting and annotating sequences
    • Altun, Y., Hofmann, T., & Smola, A. (2004). Gaussian process classification for segmenting and annotating sequences. ICML.
    • (2004) ICML
    • Altun, Y.1    Hofmann, T.2    Smola, A.3
  • 2
    • 31844436350 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for large-margin structured classification
    • Bartlett, P. L., Collins, M., Taskar, B., & McAllester, D. (2004). Exponentiated gradient algorithms for large-margin structured classification. NIPS.
    • (2004) NIPS
    • Bartlett, P.L.1    Collins, M.2    Taskar, B.3    McAllester, D.4
  • 4
    • 0019519039 scopus 로고
    • Associative search network: A reinforcement learning associative memory
    • Barto, A., Sutton, R., & Watkins, C. (1981). Associative search network: A reinforcement learning associative memory. Biological Cybernetics.
    • (1981) Biological Cybernetics
    • Barto, A.1    Sutton, R.2    Watkins, C.3
  • 5
    • 84968468700 scopus 로고
    • Polynomial approximation - A new computational technique in dynamic programming: Allocation processes
    • Bellman, R., Kalaba, R., & Kotkin, B. (1963). Polynomial approximation - a new computational technique in dynamic programming: Allocation processes. Mathematics of Computation
    • (1963) Mathematics of Computation
    • Bellman, R.1    Kalaba, R.2    Kotkin, B.3
  • 6
    • 84872997543 scopus 로고    scopus 로고
    • Learning evaluation functions for large acyclic domains
    • Boyan, J., & Moore, A. W. (1996). Learning evaluation functions for large acyclic domains. ICML.
    • (1996) ICML
    • Boyan, J.1    Moore, A.W.2
  • 7
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. EMNLP.
    • (2002) EMNLP
    • Collins, M.1
  • 8
    • 85116919751 scopus 로고    scopus 로고
    • Incremental parsing with the perceptron algorithm
    • Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. ACL.
    • (2004) ACL
    • Collins, M.1    Roark, B.2
  • 9
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • Crammer, K., & Singer, Y. (2003). A family of additive online algorithms for category ranking. JMLR, 3.
    • (2003) JMLR , vol.3
    • Crammer, K.1    Singer, Y.2
  • 10
  • 11
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund, Y., & Shapire, R. (1999). Large margin classification using the perceptron algorithm. ML, 87.
    • (1999) ML , vol.87
    • Freund, Y.1    Shapire, R.2
  • 12
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • Gentile, C. (2001). A new approximate maximal margin classification algorithm. JMLR, 2.
    • (2001) JMLR , vol.2
    • Gentile, C.1
  • 13
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 14
    • 31844444456 scopus 로고    scopus 로고
    • Nash convergence of gradient dynamics in General-sum games
    • Kearns, M., Mansour, Y., & Singh, S. (2000). Nash convergence of gradient dynamics in General-Sum games. UAI.
    • (2000) UAI
    • Kearns, M.1    Mansour, Y.2    Singh, S.3
  • 15
    • 31844435381 scopus 로고    scopus 로고
    • Loss functions and discriminitive training of energy-based models
    • LeCun, Y., & Huang, F.J. (2005). Loss functions and discriminitive training of energy-based models. AI-Stats.
    • (2005) AI-stats
    • Lecun, Y.1    Huang, F.J.2
  • 16
    • 40249107899 scopus 로고    scopus 로고
    • Case-factor digrams for structured probabilistic modeling
    • McAllester, D., Collins, M., & Pereira, F. (2004). Case-factor digrams for structured probabilistic modeling. UAI.
    • (2004) UAI
    • McAllester, D.1    Collins, M.2    Pereira, F.3
  • 17
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction and segmentation. ICML.
    • (2000) ICML
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 18
    • 31844455911 scopus 로고    scopus 로고
    • Conditional models of identity uncertainty with application to noun coreference
    • McCallum, A., & Wellner, B. (2004), Conditional models of identity uncertainty with application to noun coreference. NIPS.
    • (2004) NIPS
    • McCallum, A.1    Wellner, B.2
  • 20
    • 84899004090 scopus 로고    scopus 로고
    • The use of classifiers in sequential inference
    • Punyakanok, V., & Roth, D. (2001). The use of classifiers in sequential inference. NIPS.
    • (2001) NIPS
    • Punyakanok, V.1    Roth, D.2
  • 21
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65.
    • (1958) Psychological Review , vol.65
    • Rosenblatt, F.1
  • 23
    • 34047192804 scopus 로고    scopus 로고
    • Semi-markov conditional random fields for information extraction
    • Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random fields for information extraction. NIPS.
    • (2004) NIPS
    • Sarawagi, S.1    Cohen, W.2
  • 24
    • 9444276973 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • Sha, F., & Pereira, F. (2002). Shallow parsing with conditional random fields. NAACL/HLT.
    • (2002) NAACL/HLT
    • Sha, F.1    Pereira, F.2
  • 25
    • 14344253846 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. ICML.
    • (2004) ICML
    • Sutton, C.1    Rohanimanesh, K.2    McCallum, A.3
  • 26
    • 0000723997 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. NIPS.
    • (1996) NIPS
    • Sutton, R.1
  • 28
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interde-pendent and structured output spaces
    • Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interde-pendent and structured output spaces. ICML.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 30
    • 0347617360 scopus 로고    scopus 로고
    • Text chunking based on a generalization of winnow
    • Zhang, T., Damerau, F., & Johnson, D. (2002). Text chunking based on a generalization of winnow. JMLR 2.
    • (2002) JMLR , vol.2
    • Zhang, T.1    Damerau, F.2    Johnson, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.