-
1
-
-
14344257912
-
Gaussian process classification for segmenting and annotating sequences
-
Altun, Y., Hofmann, T., & Smola, A. (2004). Gaussian process classification for segmenting and annotating sequences. ICML.
-
(2004)
ICML
-
-
Altun, Y.1
Hofmann, T.2
Smola, A.3
-
2
-
-
31844436350
-
Exponentiated gradient algorithms for large-margin structured classification
-
Bartlett, P. L., Collins, M., Taskar, B., & McAllester, D. (2004). Exponentiated gradient algorithms for large-margin structured classification. NIPS.
-
(2004)
NIPS
-
-
Bartlett, P.L.1
Collins, M.2
Taskar, B.3
McAllester, D.4
-
4
-
-
0019519039
-
Associative search network: A reinforcement learning associative memory
-
Barto, A., Sutton, R., & Watkins, C. (1981). Associative search network: A reinforcement learning associative memory. Biological Cybernetics.
-
(1981)
Biological Cybernetics
-
-
Barto, A.1
Sutton, R.2
Watkins, C.3
-
5
-
-
84968468700
-
Polynomial approximation - A new computational technique in dynamic programming: Allocation processes
-
Bellman, R., Kalaba, R., & Kotkin, B. (1963). Polynomial approximation - a new computational technique in dynamic programming: Allocation processes. Mathematics of Computation
-
(1963)
Mathematics of Computation
-
-
Bellman, R.1
Kalaba, R.2
Kotkin, B.3
-
6
-
-
84872997543
-
Learning evaluation functions for large acyclic domains
-
Boyan, J., & Moore, A. W. (1996). Learning evaluation functions for large acyclic domains. ICML.
-
(1996)
ICML
-
-
Boyan, J.1
Moore, A.W.2
-
7
-
-
85127836544
-
Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
-
Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. EMNLP.
-
(2002)
EMNLP
-
-
Collins, M.1
-
8
-
-
85116919751
-
Incremental parsing with the perceptron algorithm
-
Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. ACL.
-
(2004)
ACL
-
-
Collins, M.1
Roark, B.2
-
9
-
-
0142228873
-
A family of additive online algorithms for category ranking
-
Crammer, K., & Singer, Y. (2003). A family of additive online algorithms for category ranking. JMLR, 3.
-
(2003)
JMLR
, vol.3
-
-
Crammer, K.1
Singer, Y.2
-
11
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Freund, Y., & Shapire, R. (1999). Large margin classification using the perceptron algorithm. ML, 87.
-
(1999)
ML
, vol.87
-
-
Freund, Y.1
Shapire, R.2
-
12
-
-
84868111801
-
A new approximate maximal margin classification algorithm
-
Gentile, C. (2001). A new approximate maximal margin classification algorithm. JMLR, 2.
-
(2001)
JMLR
, vol.2
-
-
Gentile, C.1
-
13
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
14
-
-
31844444456
-
Nash convergence of gradient dynamics in General-sum games
-
Kearns, M., Mansour, Y., & Singh, S. (2000). Nash convergence of gradient dynamics in General-Sum games. UAI.
-
(2000)
UAI
-
-
Kearns, M.1
Mansour, Y.2
Singh, S.3
-
15
-
-
31844435381
-
Loss functions and discriminitive training of energy-based models
-
LeCun, Y., & Huang, F.J. (2005). Loss functions and discriminitive training of energy-based models. AI-Stats.
-
(2005)
AI-stats
-
-
Lecun, Y.1
Huang, F.J.2
-
16
-
-
40249107899
-
Case-factor digrams for structured probabilistic modeling
-
McAllester, D., Collins, M., & Pereira, F. (2004). Case-factor digrams for structured probabilistic modeling. UAI.
-
(2004)
UAI
-
-
McAllester, D.1
Collins, M.2
Pereira, F.3
-
17
-
-
0000747663
-
Maximum entropy Markov models for information extraction and segmentation
-
McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction and segmentation. ICML.
-
(2000)
ICML
-
-
McCallum, A.1
Freitag, D.2
Pereira, F.3
-
18
-
-
31844455911
-
Conditional models of identity uncertainty with application to noun coreference
-
McCallum, A., & Wellner, B. (2004), Conditional models of identity uncertainty with application to noun coreference. NIPS.
-
(2004)
NIPS
-
-
McCallum, A.1
Wellner, B.2
-
20
-
-
84899004090
-
The use of classifiers in sequential inference
-
Punyakanok, V., & Roth, D. (2001). The use of classifiers in sequential inference. NIPS.
-
(2001)
NIPS
-
-
Punyakanok, V.1
Roth, D.2
-
21
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65.
-
(1958)
Psychological Review
, vol.65
-
-
Rosenblatt, F.1
-
23
-
-
34047192804
-
Semi-markov conditional random fields for information extraction
-
Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random fields for information extraction. NIPS.
-
(2004)
NIPS
-
-
Sarawagi, S.1
Cohen, W.2
-
24
-
-
9444276973
-
Shallow parsing with conditional random fields
-
Sha, F., & Pereira, F. (2002). Shallow parsing with conditional random fields. NAACL/HLT.
-
(2002)
NAACL/HLT
-
-
Sha, F.1
Pereira, F.2
-
25
-
-
14344253846
-
Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
-
Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. ICML.
-
(2004)
ICML
-
-
Sutton, C.1
Rohanimanesh, K.2
McCallum, A.3
-
26
-
-
0000723997
-
Generalization in reinforcement learning: Successful examples using sparse coarse coding
-
Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. NIPS.
-
(1996)
NIPS
-
-
Sutton, R.1
-
28
-
-
14344250451
-
Support vector machine learning for interde-pendent and structured output spaces
-
Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interde-pendent and structured output spaces. ICML.
-
(2004)
ICML
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
29
-
-
85156188079
-
Kernel dependency estimation
-
Weston, J., Chapelle, O., Elisseeff, A., Schoelkopf, B., & Vapnik, V. (2002). Kernel dependency estimation. NIPS.
-
(2002)
NIPS
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schoelkopf, B.4
Vapnik, V.5
-
30
-
-
0347617360
-
Text chunking based on a generalization of winnow
-
Zhang, T., Damerau, F., & Johnson, D. (2002). Text chunking based on a generalization of winnow. JMLR 2.
-
(2002)
JMLR
, vol.2
-
-
Zhang, T.1
Damerau, F.2
Johnson, D.3
-
32
-
-
31844441134
-
-
In preparation
-
Zinkevich, M., Riley, P., Bowling, M., & Blum, A. (2005). Marginal Best Response, Nash Equilibria, and Iterated Gradient Ascent. In preparation.
-
(2005)
Marginal Best Response, Nash Equilibria, and Iterated Gradient Ascent
-
-
Zinkevich, M.1
Riley, P.2
Bowling, M.3
Blum, A.4
|