메뉴 건너뛰기




Volumn 38, Issue 10, 2010, Pages 969-976

Machine Learning Approach to Predict Sediment Load - A Case Study

Author keywords

Alluvial channels; River engineering; Sediment transport; Support vector machine; Total sediment load

Indexed keywords

ALLUVIAL DEPOSIT; DATABASE; FLUVIAL DEPOSIT; LEARNING; NONLINEARITY; SEDIMENT TRANSPORT; SUPPORT STRUCTURE; SUSPENDED LOAD;

EID: 78049456545     PISSN: 18630650     EISSN: 18630669     Source Type: Journal    
DOI: 10.1002/clen.201000068     Document Type: Article
Times cited : (72)

References (22)
  • 1
    • 23044459648 scopus 로고    scopus 로고
    • Suspended Sediment Estimation Using Neuro-fuzzy and Neural Network Approaches
    • O. Kisi, Suspended Sediment Estimation Using Neuro-fuzzy and Neural Network Approaches, Hydrol. Sci. 2005, 50 (4), 683-696.
    • (2005) Hydrol. Sci. , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 2
    • 78049480672 scopus 로고    scopus 로고
    • Suspended Sediment Load Estimation in Lower Sakarya River by Using Soft Computational Methods, Proceedings of the International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2005, Alicante, Spain,
    • E. M. D. Sasal, S. Isik, Suspended Sediment Load Estimation in Lower Sakarya River by Using Soft Computational Methods, Proceedings of the International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2005, Alicante, Spain 2005, pp. 395-406.
    • (2005) , pp. 395-406
    • Sasal, E.M.D.1    Isik, S.2
  • 3
    • 78049460064 scopus 로고    scopus 로고
    • Department of Irrigation and Drainage Malaysia or DID, Study on River Sand Mining Capacity in Malaysia,
    • Department of Irrigation and Drainage Malaysia or DID, Study on River Sand Mining Capacity in Malaysia, 2009.
    • (2009)
  • 5
    • 0036611003 scopus 로고    scopus 로고
    • M. Prediction of Sediment Load Concentration in Rivers Using Artificial Neural Network Model
    • H. M. Nagy, K. Watanabe, M. Hirano, M. Prediction of Sediment Load Concentration in Rivers Using Artificial Neural Network Model, J. Hydraulic Eng. 2002, 128 (6), 588-595.
    • (2002) J. Hydraulic Eng. , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 6
    • 77950647677 scopus 로고    scopus 로고
    • Evaluation of Total Load Sediment Transport Using AAN
    • C. T. Yang, Evaluation of Total Load Sediment Transport Using AAN, Int. J. Sediment Res. 2009, 24 (3), 274-286.
    • (2009) Int. J. Sediment Res. , vol.24 , Issue.3 , pp. 274-286
    • Yang, C.T.1
  • 7
    • 34248631948 scopus 로고    scopus 로고
    • Machine Learning Approach to Modeling Sediment Transport
    • B. Bhattacharya, R. K. Price, D. P. Solomatine, Machine Learning Approach to Modeling Sediment Transport, J. Hydraulic Eng. 2007, 133 (4), 440-450.
    • (2007) J. Hydraulic Eng. , vol.133 , Issue.4 , pp. 440-450
    • Bhattacharya, B.1    Price, R.K.2    Solomatine, D.P.3
  • 8
    • 27744590254 scopus 로고    scopus 로고
    • Discharge Rating Curve Extension: A New Approach
    • C. Sivapragasam, N. Muttil, Discharge Rating Curve Extension: A New Approach, Water Res. Manage. 2005, 19 (5), 505-520.
    • (2005) Water Res. Manage. , vol.19 , Issue.5 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 9
    • 33746916489 scopus 로고    scopus 로고
    • Support Vector Regression for Real-Time Flood Stage Forecasting
    • P. S. Yu, S. T. Chen, I. F. Chang, Support Vector Regression for Real-Time Flood Stage Forecasting, J. Hydrol. 2006, 328 (3-4), 704-716.
    • (2006) J. Hydrol. , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 10
    • 33645864343 scopus 로고    scopus 로고
    • Application of Support Vector Machine in Lake Water Level Prediction
    • M. S. Khan, P. Coulibaly, Application of Support Vector Machine in Lake Water Level Prediction, J. Hydrol. Eng. 2006, 11 (3), 199-205.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 11
    • 39449089195 scopus 로고    scopus 로고
    • Data-Driven Modelling: Some Past Experiences and New Approaches
    • D. P. Solomatine, A. Otsfeld, Data-Driven Modelling: Some Past Experiences and New Approaches, J. Hydroinf. 2008, 10 (1), 3-22.
    • (2008) J. Hydroinf. , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Otsfeld, A.2
  • 12
    • 78049484297 scopus 로고    scopus 로고
    • Guidelines for Field Data Collection and Analysis of River Sediment, Department of Irrigation and Drainage Malaysia, Kuala Lumpur,
    • A. Ab. Ghani N. A. Zakaria, R. Abdullah, C. K. Chang, S. K. Sinnakaudan, L. Mohd Sidek, Guidelines for Field Data Collection and Analysis of River Sediment, Department of Irrigation and Drainage Malaysia, Kuala Lumpur 2003, 35 pp.
    • (2003) , pp. 35
    • Ghani, A.A.1    Zakaria, N.A.2    Abdullah, R.3    Chang, C.K.4    Sinnakaudan, S.K.5    Mohd Sidek, L.6
  • 13
    • 0000279127 scopus 로고
    • Unit Stream Power and Sediment Transport, ASCE Proceeding Paper 9295
    • C. T. Yang, Unit Stream Power and Sediment Transport, ASCE Proceeding Paper 9295, J. Hydraulic Div. 1972, 98 (10), 1805-1826.
    • (1972) J. Hydraulic Div. , vol.98 , Issue.10 , pp. 1805-1826
    • Yang, C.T.1
  • 14
    • 0003621986 scopus 로고
    • A Monograph on Sediment Transport in Alluvial Streams
    • Teknisk Forlag, Copenhagen, Denmark
    • F. Engelund, E. Hansen, A Monograph on Sediment Transport in Alluvial Streams, Teknisk Forlag, Copenhagen, Denmark 1967.
    • (1967)
    • Engelund, F.1    Hansen, E.2
  • 15
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer-Verlag, New York
    • V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York 1995.
    • (1995)
    • Vapnik, V.1
  • 16
    • 0003991806 scopus 로고
    • Statistical Learning Theory
    • Springer, New York
    • V. Vapnik, Statistical Learning Theory, Springer, New York 1988.
    • (1988)
    • Vapnik, V.1
  • 17
    • 84899013173 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems
    • in, Eds., M. Mozer, M. Jordan, T. Petsche), MIT Press, Cambridge, MA
    • H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, V. Vapnik, Support Vector Regression Machines, in Advances in Neural Information Processing Systems (Eds.: M. Mozer, M. Jordan, T. Petsche ), Vol. 9, MIT Press, Cambridge, MA 1997, 155-161.
    • (1997) Support Vector Regression Machines , vol.9 , pp. 155-161
    • Drucker, H.1    Burges, C.J.C.2    Kaufman, L.3    Smola, A.4    Vapnik, V.5
  • 18
    • 0003401675 scopus 로고
    • A Tutorial on Support Vector Regression
    • Royal Holloway College, London, UK NeuroCOLT Tech., Rep. TR 1998-030.
    • A. J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, Royal Holloway College, London, UK NeuroCOLT Tech. 1988, Rep. TR 1998-030.
    • (1988)
    • Smola, A.J.1    Schölkopf, B.2
  • 19
    • 33644845063 scopus 로고    scopus 로고
    • Facilitating the Application of Support Vector Regression by Using a Universal Pearson VII Function Based Kernel
    • B. Uestuen, W. J. Melssen, L. M. C. Buydens, Facilitating the Application of Support Vector Regression by Using a Universal Pearson VII Function Based Kernel, Chemom. Intell. Lab. Syst. 2006, 81, 29-40.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , pp. 29-40
    • Uestuen, B.1    Melssen, W.J.2    Buydens, L.M.C.3
  • 20
    • 3142715527 scopus 로고    scopus 로고
    • BSchölkopf Advances in Kernel Methods - Support Vector Learning
    • in, Eds., C. J. C. Burges, A. J. Smola), MIT Press, Cambridge, MA
    • J. Platt, Fast Training of Support Vector Machines Using Sequential Minimal Optimization, in BSchölkopf Advances in Kernel Methods - Support Vector Learning, (Eds.: C. J. C. Burges, A. J. Smola ), MIT Press, Cambridge, MA 1999, 185-208.
    • (1999) Fast Training of Support Vector Machines Using Sequential Minimal Optimization , pp. 185-208
    • Platt, J.1
  • 22
    • 78049477808 scopus 로고    scopus 로고
    • NEUROSOLTIONS 5.0. NeuroDimension, Inc.,
    • NEUROSOLTIONS 5.0. NeuroDimension, Inc., 2009.
    • (2009)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.