메뉴 건너뛰기




Volumn 20, Issue 11-13, 1999, Pages 1201-1209

Representing the behaviour of supervised classification learning algorithms by Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

GRAPH THEORY; LEARNING ALGORITHMS; MATHEMATICAL MODELS; STATISTICAL METHODS;

EID: 0342902635     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(99)00095-1     Document Type: Article
Times cited : (13)

References (34)
  • 3
    • 85013576689 scopus 로고
    • Theory and applications of agnostic PAC-learning with small decision trees
    • Prieditis, A., Russell, S. (Eds.), Morgan Kaufmann, Los Altos, CA
    • Auer, P., Holte, R., Maass, W., 1995. Theory and applications of agnostic PAC-learning with small decision trees. In: Prieditis, A., Russell, S. (Eds.), Machine Learning: Proceedings of the 12th International Conference, Morgan Kaufmann, Los Altos, CA.
    • (1995) Machine Learning: Proceedings of the 12th International Conference
    • Auer, P.1    Holte, R.2    Maass, W.3
  • 6
    • 0342672629 scopus 로고    scopus 로고
    • Personal communication
    • Clark, P., 1998. Personal communication.
    • (1998)
    • Clark, P.1
  • 7
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., Nibblet, T., 1989. The CN2 induction algorithm. Machine Learning 3 (4), 261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Nibblet, T.2
  • 8
    • 74349097539 scopus 로고
    • Fast effective rule induction
    • Proceedings of the 12th International Conference
    • Cohen, W.W., 1995. Fast effective rule induction. In: Machine Learning, Proceedings of the 12th International Conference.
    • (1995) Machine Learning
    • Cohen, W.W.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G.F., Herskovits, E.A., 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.A.2
  • 10
    • 34250080806 scopus 로고
    • A weighted nearest neighbor algorithm for learning with symbolic features
    • Cost, S., Salzberg, S., 1993. A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10 (1), 57-78.
    • (1993) Machine Learning , vol.10 , Issue.1 , pp. 57-78
    • Cost, S.1    Salzberg, S.2
  • 13
    • 0031274383 scopus 로고    scopus 로고
    • Analysis of the behaviour of genetic algorithms when learning Bayesian networks structure from data
    • Etxeberria, R., Larrañaga, P., Picaza, J.M., 1997. Analysis of the behaviour of genetic algorithms when learning Bayesian networks structure from data. Pattern Recognition Letters 18 (11-13), 1269-1273.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1269-1273
    • Etxeberria, R.1    Larrañaga, P.2    Picaza, J.M.3
  • 15
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., Chickering, D.M., 1995. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 17
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used databases
    • Holte, R.C., 1993. Very simple classification rules perform well on most commonly used databases. Machine Learning 11, 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 19
    • 84948977233 scopus 로고
    • The power of decision tables
    • Lavrac, N., Wrobel, S. (Eds.), Proceedings of the European Conference on Machine Learning Springer, Berlin
    • Kohavi, R., 1995b. The power of decision tables. In: Lavrac, N., Wrobel, S. (Eds.), Proceedings of the European Conference on Machine Learning. Lecture Notes in Artificial Intelligence, Vol. 914. Springer, Berlin, pp. 174-189.
    • (1995) Lecture Notes in Artificial Intelligence , vol.914 , pp. 174-189
    • Kohavi, R.1
  • 22
    • 0342916962 scopus 로고
    • Research Report 89/11. Statistical Research Unit. University of Copenhagen
    • Kreiner, S., 1989. Graphical modelling using DIGRAM. Research Report 89/11. Statistical Research Unit. University of Copenhagen.
    • (1989) Graphical Modelling Using DIGRAM
    • Kreiner, S.1
  • 23
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks. An approach based on the MDL Principle
    • Lam, W., Bacchus, F., 1994. Learning Bayesian belief networks. An approach based on the MDL Principle. Computational Intelligence 10 (4).
    • (1994) Computational Intelligence , vol.10 , Issue.4
    • Lam, W.1    Bacchus, F.2
  • 25
  • 28
    • 0003408496 scopus 로고
    • Irvine, CA. University of California, Department of Information and Computer Science
    • Murphy, P.M., Aha, D.W., 1994. UCI Repository of Machine Learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html. Irvine, CA. University of California, Department of Information and Computer Science.
    • (1994) UCI Repository of Machine Learning Databases
    • Murphy, P.M.1    Aha, D.W.2
  • 31
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R., 1986. Induction of decision trees. Machine Learning 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 32
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan, J.R., 1989. Inferring decision trees using the minimum description length principle. Information and Computation 80, 227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.