메뉴 건너뛰기




Volumn 9, Issue 3, 2015, Pages

Additive manufacturing techniques for the production of tissue engineering constructs

Author keywords

Additive manufacturing; Regenerative medicine; Scaffold; Solid freeform fabrication; Tissue and organ printing; Tissue engineering

Indexed keywords

3D MODELING; 3D PRINTERS; EXTRUSION; LASER HEATING; MELT SPINNING; REGENERATIVE MEDICINE; SCAFFOLDS (BIOLOGY); TISSUE;

EID: 84869876690     PISSN: 19326254     EISSN: 19327005     Source Type: Journal    
DOI: 10.1002/term.1635     Document Type: Review
Times cited : (313)

References (144)
  • 1
    • 84859068487 scopus 로고    scopus 로고
    • Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation
    • Abarrategi A, Moreno-Vicente C, Martinez-Vazquez FJ, et al. 2012; Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. PLoS One 7(3): e34117.
    • (2012) PLoS One , vol.7 , Issue.3 , pp. e34117
    • Abarrategi, A.1    Moreno-Vicente, C.2    Martinez-Vazquez, F.J.3
  • 2
    • 77955276092 scopus 로고    scopus 로고
    • Virtual topological optimisation of scaffolds for rapid prototyping
    • Almeida HA, Bártolo PJ. 2010; Virtual topological optimisation of scaffolds for rapid prototyping. Med Eng Phys 32(7): 775-782.
    • (2010) Med Eng Phys , vol.32 , Issue.7 , pp. 775-782
    • Almeida, H.A.1    Bártolo, P.J.2
  • 3
    • 33748960111 scopus 로고    scopus 로고
    • Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells
    • Arcaute K, Mann B, Wicker R. 2006; Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34(9): 1429-1441.
    • (2006) Ann Biomed Eng , vol.34 , Issue.9 , pp. 1429-1441
    • Arcaute, K.1    Mann, B.2    Wicker, R.3
  • 4
    • 84856744773 scopus 로고    scopus 로고
    • Standard terminology for additive manufacturing technologies
    • ASTM Standard F2792-12a. 2012; Standard terminology for additive manufacturing technologies; DOI: 10.1520/F2792-12A; www.astm.org
    • (2012)
  • 5
    • 3042597735 scopus 로고    scopus 로고
    • Biological laser printing: a novel technique for creating heterogeneous three-dimensional cell patterns
    • Barron JA, Wu P, Ladouceur HD, et al. 2004; Biological laser printing: a novel technique for creating heterogeneous three-dimensional cell patterns. Biomed Microdevices 6(2): 139-147.
    • (2004) Biomed Microdevices , vol.6 , Issue.2 , pp. 139-147
    • Barron, J.A.1    Wu, P.2    Ladouceur, H.D.3
  • 6
    • 67649354904 scopus 로고    scopus 로고
    • Direct-write assembly of 3D hydrogel scaffolds for guided cell growth
    • Barry RA, Shepherd RF, Hanson JN, et al. 2009; Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv Mater 21(23): 2407-2410.
    • (2009) Adv Mater , vol.21 , Issue.23 , pp. 2407-2410
    • Barry, R.A.1    Shepherd, R.F.2    Hanson, J.N.3
  • 7
    • 79957637487 scopus 로고    scopus 로고
    • BioCell printing: integrated automated assembly system for tissue engineering constructs
    • Bártolo P, Domingos M, Gloria A, et al. 2011; BioCell printing: integrated automated assembly system for tissue engineering constructs. CIRP Ann Manuf Technol 60(1): 271-274.
    • (2011) CIRP Ann Manuf Technol , vol.60 , Issue.1 , pp. 271-274
    • Bártolo, P.1    Domingos, M.2    Gloria, A.3
  • 9
    • 79953117844 scopus 로고    scopus 로고
    • Drop-on-demand inkjet bioprinting: a primer
    • Binder KW, Allen AJ, Yoo JJ, et al. 2011; Drop-on-demand inkjet bioprinting: a primer. Gene Ther Regul 6(01): 33-49.
    • (2011) Gene Ther Regul , vol.6 , Issue.1 , pp. 33-49
    • Binder, K.W.1    Allen, A.J.2    Yoo, J.J.3
  • 10
    • 33847128744 scopus 로고    scopus 로고
    • Drop-on-demand printing of cells and materials for designer tissue constructs
    • Boland T, Tao X, Damon BJ, et al. 2007; Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C Mater Biol Appl 27(3): 372-376.
    • (2007) Mater Sci Eng C Mater Biol Appl , vol.27 , Issue.3 , pp. 372-376
    • Boland, T.1    Tao, X.2    Damon, B.J.3
  • 11
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland T, Xu T, Damon B, et al. 2006; Application of inkjet printing to tissue engineering. Biotechnol J 1(9): 910-917.
    • (2006) Biotechnol J , vol.1 , Issue.9 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3
  • 12
    • 79251632163 scopus 로고    scopus 로고
    • Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
    • Butscher A, Bohner M, Hofmann S, et al. 2011; Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3): 907-920.
    • (2011) Acta Biomater , vol.7 , Issue.3 , pp. 907-920
    • Butscher, A.1    Bohner, M.2    Hofmann, S.3
  • 13
    • 82055185842 scopus 로고    scopus 로고
    • Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite
    • Catros S, Fricain JC, Guillotin B, et al. 2011; Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3(2): 025001.
    • (2011) Biofabrication , vol.3 , Issue.2 , pp. 025001
    • Catros, S.1    Fricain, J.C.2    Guillotin, B.3
  • 14
    • 33748982006 scopus 로고    scopus 로고
    • Cell patterning without chemical surface modification: cell-cell interactions between printed bovine aortic endothelial cells (BAECs) on a homogeneous cell-adherent hydrogel
    • Chen CY, Barron JA, Ringeisen BR. 2006; Cell patterning without chemical surface modification: cell-cell interactions between printed bovine aortic endothelial cells (BAECs) on a homogeneous cell-adherent hydrogel. Appl Surf Sci 252(24): 8641-8645.
    • (2006) Appl Surf Sci , vol.252 , Issue.24 , pp. 8641-8645
    • Chen, C.Y.1    Barron, J.A.2    Ringeisen, B.R.3
  • 15
    • 79953878327 scopus 로고    scopus 로고
    • Self-assembled composite matrix in a hierarchical 3D scaffold for bone tissue engineering
    • Chen M, Le DQS, Baatrup A, et al. 2011; Self-assembled composite matrix in a hierarchical 3D scaffold for bone tissue engineering. Acta Biomater 7(5): 2244-2255.
    • (2011) Acta Biomater , vol.7 , Issue.5 , pp. 2244-2255
    • Chen, M.1    Le, D.Q.S.2    Baatrup, A.3
  • 17
    • 67651061199 scopus 로고    scopus 로고
    • Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography
    • Choi J-W, Wicker R, Lee S-H, et al. 2009; Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15-16): 5494-5503.
    • (2009) J Mater Process Technol , vol.209 , Issue.15-16 , pp. 5494-5503
    • Choi, J.-W.1    Wicker, R.2    Lee, S.-H.3
  • 18
    • 0034957704 scopus 로고    scopus 로고
    • Hydroxyapatite implants with designed internal architecture
    • Chu TMG, Halloran JW, Hollister SJ, et al. 2001; Hydroxyapatite implants with designed internal architecture, J Mater Sci Mater Med 12(6): 471-478.
    • (2001) J Mater Sci Mater Med , vol.12 , Issue.6 , pp. 471-478
    • Chu, T.M.G.1    Halloran, J.W.2    Hollister, S.J.3
  • 19
    • 22944455217 scopus 로고    scopus 로고
    • Blends of poly-(ε{lunate}-caprolactone) and polysaccharides in tissue engineering applications
    • Ciardelli G, Chiono V, Vozzi G, et al. 2005; Blends of poly-(ε{lunate}-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4): 1961-1976.
    • (2005) Biomacromolecules , vol.6 , Issue.4 , pp. 1961-1976
    • Ciardelli, G.1    Chiono, V.2    Vozzi, G.3
  • 20
    • 65149089604 scopus 로고    scopus 로고
    • Three-dimensional biodegradable structures fabricated by two-photon polymerization
    • Claeyssens F, Hasan EA, Gaidukeviciute A, et al. 2009; Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5): 3219-3223.
    • (2009) Langmuir , vol.25 , Issue.5 , pp. 3219-3223
    • Claeyssens, F.1    Hasan, E.A.2    Gaidukeviciute, A.3
  • 21
    • 79551556822 scopus 로고    scopus 로고
    • Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs
    • Cohen DL, Lo W, Tsavaris A, et al. 2011; Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs. Tissue Eng Part C Methods 17(2): 239-248.
    • (2011) Tissue Eng Part C Methods , vol.17 , Issue.2 , pp. 239-248
    • Cohen, D.L.1    Lo, W.2    Tsavaris, A.3
  • 22
    • 0344063928 scopus 로고
    • Apparatus and method for creating three-dimensional objects
    • US Patent No. 5121329.
    • Crump SS. 1992; Apparatus and method for creating three-dimensional objects, US Patent No. 5121329.
    • (1992)
    • Crump, S.S.1
  • 23
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui X, Boland T. 2009; Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31): 6221-6227.
    • (2009) Biomaterials , vol.30 , Issue.31 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 24
    • 0039147234 scopus 로고
    • Method and apparatus for producing parts by selective sintering
    • US Patent No. 5017753.
    • Deckard CR. 1989; Method and apparatus for producing parts by selective sintering, US Patent No. 5017753.
    • (1989)
    • Deckard, C.R.1
  • 25
    • 9344233837 scopus 로고    scopus 로고
    • Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography
    • Dhariwala B, Hunt E, Boland T. 2004; Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9-10): 1316-1322.
    • (2004) Tissue Eng , vol.10 , Issue.9-10 , pp. 1316-1322
    • Dhariwala, B.1    Hunt, E.2    Boland, T.3
  • 26
    • 77953800030 scopus 로고    scopus 로고
    • Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environment
    • Domingos M, Chiellini F, Cometa S, et al. 2010; Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environment. Virtual Phys Prototyping 5(2): 65-73.
    • (2010) Virtual Phys Prototyping , vol.5 , Issue.2 , pp. 65-73
    • Domingos, M.1    Chiellini, F.2    Cometa, S.3
  • 27
    • 71449086264 scopus 로고    scopus 로고
    • Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications
    • Domingos M, Dinucci D, Cometa S, et al. 2009; Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int J Biomater; DOI: 10.1155/2009/239643
    • (2009) Int J Biomater
    • Domingos, M.1    Dinucci, D.2    Cometa, S.3
  • 28
    • 84855833405 scopus 로고    scopus 로고
    • Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly(ε{lunate}-caprolactone) scaffolds
    • Domingos MA, Chiellini F, Gloria A, et al. 2011; Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly(ε{lunate}-caprolactone) scaffolds. Rapid Prototyping J 18(1): 6.
    • (2011) Rapid Prototyping J , vol.18 , Issue.1 , pp. 6
    • Domingos, M.A.1    Chiellini, F.2    Gloria, A.3
  • 29
    • 85009478276 scopus 로고    scopus 로고
    • TheriForm technology
    • Rathbone MJ, Hadgraft J, Roberts MS (eds). Informa Healthcare
    • Donald M, Chen-Chao W, Charles R. 2002; TheriForm technology. In Modified-Release Drug Delivery Technology, Rathbone MJ, Hadgraft J, Roberts MS (eds). Informa Healthcare 2002; 77-87.
    • (2002) Modified-Release Drug Delivery Technology , vol.2002 , pp. 77-87
    • Donald, M.1    Chen-Chao, W.2    Charles, R.3
  • 30
    • 79958287550 scopus 로고    scopus 로고
    • Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering
    • Duan B, Cheung WL, Wang M. 2011a; Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3(1): 015001.
    • (2011) Biofabrication , vol.3 , Issue.1 , pp. 015001
    • Duan, B.1    Cheung, W.L.2    Wang, M.3
  • 31
    • 77957147532 scopus 로고    scopus 로고
    • Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor
    • Duan B, Wang M. 2010a; Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7(suppl 5): S615-S629.
    • (2010) J R Soc Interface , vol.7 , pp. S615-S629
    • Duan, B.1    Wang, M.2
  • 32
    • 77955512082 scopus 로고    scopus 로고
    • Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering
    • Duan B, Wang M. 2010b; Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering, Polym Degrad Stabil 95(9): 1655-1664.
    • (2010) Polym Degrad Stabil , vol.95 , Issue.9 , pp. 1655-1664
    • Duan, B.1    Wang, M.2
  • 33
    • 79952721140 scopus 로고    scopus 로고
    • Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation
    • Duan B, Wang M, Li ZY, et al. 2011; Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation. Front Mater Sci China 5(1): 57-68.
    • (2011) Front Mater Sci China , vol.5 , Issue.1 , pp. 57-68
    • Duan, B.1    Wang, M.2    Li, Z.Y.3
  • 34
    • 77958101381 scopus 로고    scopus 로고
    • Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
    • Duan B, Wang M, Zhou WY, et al. 2010; Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12): 4495-4505.
    • (2010) Acta Biomater , vol.6 , Issue.12 , pp. 4495-4505
    • Duan, B.1    Wang, M.2    Zhou, W.Y.3
  • 35
    • 80053576730 scopus 로고    scopus 로고
    • Preparation of poly(ε{lunate}-caprolactone)-based tissue engineering scaffolds by stereolithography
    • Elomaa L, Teixeira S, Hakala R, et al. 2011; Preparation of poly(ε{lunate}-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 7(11): 3850-3856.
    • (2011) Acta Biomater , vol.7 , Issue.11 , pp. 3850-3856
    • Elomaa, L.1    Teixeira, S.2    Hakala, R.3
  • 36
    • 84882279572 scopus 로고    scopus 로고
    • Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair
    • Emans PJ, Jansen EJP, van Iersel D, et al. 2012; Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med; DOI: 10.1002/term.1477
    • (2012) J Tissue Eng Regen Med
    • Emans, P.J.1    Jansen, E.J.P.2    van Iersel, D.3
  • 37
    • 85204837356 scopus 로고    scopus 로고
    • [Accessed 15 June 2012]
    • Envisiontec: www.envisiontec.com/index.php?page=news&id=17 [Accessed 15 June 2012]
  • 38
    • 77955868224 scopus 로고    scopus 로고
    • Selective laser sintering of hydroxyapatite/poly(ε{lunate}-caprolactone) scaffolds
    • Eosoly S, Brabazon D, Lohfeld S, et al. 2010, Selective laser sintering of hydroxyapatite/poly(ε{lunate}-caprolactone) scaffolds. Acta Biomater 6(7): 2511-2517.
    • (2010) Acta Biomater , vol.6 , Issue.7 , pp. 2511-2517
    • Eosoly, S.1    Brabazon, D.2    Lohfeld, S.3
  • 39
    • 34548086740 scopus 로고    scopus 로고
    • Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing
    • Fedorovich NE, Alblas J, de Wijn JR, et al. 2007; Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8): 1905-1925.
    • (2007) Tissue Eng , vol.13 , Issue.8 , pp. 1905-1925
    • Fedorovich, N.E.1    Alblas, J.2    de Wijn, J.R.3
  • 40
    • 80053095196 scopus 로고    scopus 로고
    • Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors
    • Fedorovich NE, Kuipers E, Gawlitta D, et al. 2011a; Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng Part A 17(19-20): 2473-2486.
    • (2011) Tissue Eng Part A , vol.17 , Issue.19-20 , pp. 2473-2486
    • Fedorovich, N.E.1    Kuipers, E.2    Gawlitta, D.3
  • 41
    • 79960782567 scopus 로고    scopus 로고
    • Distinct tissue formation by heterogeneous printing of osteo-and endothelial progenitor cells
    • Fedorovich NE, Wijnberg HM, Dhert WJA, et al. 2011; Distinct tissue formation by heterogeneous printing of osteo-and endothelial progenitor cells. Tissue Eng Part A 17(15-16): 2113-2121.
    • (2011) Tissue Eng Part A , vol.17 , Issue.15-16 , pp. 2113-2121
    • Fedorovich, N.E.1    Wijnberg, H.M.2    Dhert, W.J.A.3
  • 42
    • 70449701899 scopus 로고    scopus 로고
    • Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel
    • Franco J, Hunger P, Launey ME, et al. 2010; Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 6(1): 218-228.
    • (2010) Acta Biomater , vol.6 , Issue.1 , pp. 218-228
    • Franco, J.1    Hunger, P.2    Launey, M.E.3
  • 43
    • 84858779329 scopus 로고    scopus 로고
    • Toward engineering functional organ modules by additive manufacturing
    • Francoise M, Karoly J, Chirag K, et al. 2012; Toward engineering functional organ modules by additive manufacturing. Biofabrication 4(2): 022001.
    • (2012) Biofabrication , vol.4 , Issue.2 , pp. 022001
    • Francoise, M.1    Karoly, J.2    Chirag, K.3
  • 44
    • 80052273289 scopus 로고    scopus 로고
    • Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration
    • Fu Q, Saiz E, Tomsia AP. 2011; Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7(10): 3547-3554.
    • (2011) Acta Biomater , vol.7 , Issue.10 , pp. 3547-3554
    • Fu, Q.1    Saiz, E.2    Tomsia, A.P.3
  • 45
    • 38149064519 scopus 로고    scopus 로고
    • Development of modelling methods for materials to be used as bone substitutes
    • Gabbrielli R, Turner I, Bowen CR. 2008; Development of modelling methods for materials to be used as bone substitutes. Key Eng Mater 361: 903-906.
    • (2008) Key Eng Mater , vol.361 , pp. 903-906
    • Gabbrielli, R.1    Turner, I.2    Bowen, C.R.3
  • 46
    • 34548404586 scopus 로고    scopus 로고
    • Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices
    • Gbureck U, Vorndran E, Muller FA, et al. 2007; Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release 122(2): 173-180.
    • (2007) J Control Release , vol.122 , Issue.2 , pp. 173-180
    • Gbureck, U.1    Vorndran, E.2    Muller, F.A.3
  • 47
    • 73149091210 scopus 로고    scopus 로고
    • 3D fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications
    • Gloria A, Russo T, De Santis R, et al. 2009; 3D fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications. J Appl Biomater Biomech 7(3): 141-152.
    • (2009) J Appl Biomater Biomech , vol.7 , Issue.3 , pp. 141-152
    • Gloria, A.1    Russo, T.2    De Santis, R.3
  • 48
    • 80053297640 scopus 로고    scopus 로고
    • Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions
    • Gruene M, Pflaum M, Hess C, et al. 2011; Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 17(10): 973-982.
    • (2011) Tissue Eng Part C Methods , vol.17 , Issue.10 , pp. 973-982
    • Gruene, M.1    Pflaum, M.2    Hess, C.3
  • 49
    • 83755195479 scopus 로고    scopus 로고
    • Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine
    • Guillemot F, Guillotin B, Fontaine A, et al. 2011; Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull 36(12): 1015-1019.
    • (2011) MRS Bull , vol.36 , Issue.12 , pp. 1015-1019
    • Guillemot, F.1    Guillotin, B.2    Fontaine, A.3
  • 50
    • 77955276061 scopus 로고    scopus 로고
    • High-throughput laser printing of cells and biomaterials for tissue engineering
    • Guillemot F, Souquet A, Catros S, et al. 2010; High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6(7): 2494-2500.
    • (2010) Acta Biomater , vol.6 , Issue.7 , pp. 2494-2500
    • Guillemot, F.1    Souquet, A.2    Catros, S.3
  • 51
    • 77955275038 scopus 로고    scopus 로고
    • Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
    • Guillotin B, Souquet A, Catros S, et al. 2010; Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28): 7250-7256.
    • (2010) Biomaterials , vol.31 , Issue.28 , pp. 7250-7256
    • Guillotin, B.1    Souquet, A.2    Catros, S.3
  • 52
    • 82055184089 scopus 로고    scopus 로고
    • Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
    • Hamid Q, Snyder J, Wang C, et al. 2011; Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Biofabrication 3(3): 034109.
    • (2011) Biofabrication , vol.3 , Issue.3 , pp. 034109
    • Hamid, Q.1    Snyder, J.2    Wang, C.3
  • 53
    • 78650615142 scopus 로고    scopus 로고
    • 3D microperiodic hydrogel scaffolds for robust neuronal cultures
    • Hanson SJN, Parker ST, Shepherd RF, et al. 2011; 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv Funct Mater 21(1): 47-54.
    • (2011) Adv Funct Mater , vol.21 , Issue.1 , pp. 47-54
    • Hanson, S.J.N.1    Parker, S.T.2    Shepherd, R.F.3
  • 54
    • 27244456719 scopus 로고    scopus 로고
    • Medical rapid prototyping applications and methods
    • Hieu LC, Zlatov N, Sloten JV, et al. 2005; Medical rapid prototyping applications and methods. Assem Autom 25(4): 284-292.
    • (2005) Assem Autom , vol.25 , Issue.4 , pp. 284-292
    • Hieu, L.C.1    Zlatov, N.2    Sloten, J.V.3
  • 55
    • 77950792851 scopus 로고    scopus 로고
    • The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model
    • Ho ST, Hutmacher DW, Ekaputra AK, et al. 2010; The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model, Tissue Eng Part A 16(4): 1123-1141.
    • (2010) Tissue Eng Part A , vol.16 , Issue.4 , pp. 1123-1141
    • Ho, S.T.1    Hutmacher, D.W.2    Ekaputra, A.K.3
  • 56
    • 0003465262 scopus 로고
    • Apparatus for production of three-dimensional objects by stereolithography.
    • US Patent No. 4575330.
    • Hull CW. 1986; Apparatus for production of three-dimensional objects by stereolithography. US Patent No. 4575330.
    • (1986)
    • Hull, C.W.1
  • 57
    • 85204822537 scopus 로고
    • Method for production of three-dimensional objects by stereolithography. US Patent No. 4929402.
    • Hull CW. 1990; Method for production of three-dimensional objects by stereolithography. US Patent No. 4929402.
    • (1990)
    • Hull, C.W.1
  • 58
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. 2000; Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24): 2529-2543.
    • (2000) Biomaterials , vol.21 , Issue.24 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 59
    • 0035094757 scopus 로고    scopus 로고
    • Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
    • Hutmacher DW, Schantz T, Zein I, et al. 2001; Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2): 203-216.
    • (2001) J Biomed Mater Res , vol.55 , Issue.2 , pp. 203-216
    • Hutmacher, D.W.1    Schantz, T.2    Zein, I.3
  • 60
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher DW, Sittinger M, Risbud MV. 2004; Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7): 354-362.
    • (2004) Trends Biotechnol , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 61
    • 64149086064 scopus 로고    scopus 로고
    • Fumaric acid monoethyl ester-functionalized poly(d,l-lactide)/N-vinyl--pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography
    • Jansen J, Melchels FPW, Grijpma DW, et al. 2008; Fumaric acid monoethyl ester-functionalized poly(d, l-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 10(2): 214-220.
    • (2008) Biomacromolecules , vol.10 , Issue.2 , pp. 214-220
    • Jansen, J.1    Melchels, F.P.W.2    Grijpma, D.W.3
  • 62
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V, Kaplan D. 2005; Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27): 5474-5491.
    • (2005) Biomaterials , vol.26 , Issue.27 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 63
    • 77951245659 scopus 로고    scopus 로고
    • In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice
    • Keriquel V, Guillemot F, Arnault I, et al. 2010; In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2(1): 014101.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 014101
    • Keriquel, V.1    Guillemot, F.2    Arnault, I.3
  • 64
    • 79954437329 scopus 로고    scopus 로고
    • Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration
    • Kim G, Ahn S, Kim Y, et al. 2011; Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 21(17): 6165-6172.
    • (2011) J Mater Chem , vol.21 , Issue.17 , pp. 6165-6172
    • Kim, G.1    Ahn, S.2    Kim, Y.3
  • 65
    • 70450188500 scopus 로고    scopus 로고
    • A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering
    • Kim G, Ahn S, Yoon H, et al. 2009; A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J Mater Chem 19(46): 8817-8823.
    • (2009) J Mater Chem , vol.19 , Issue.46 , pp. 8817-8823
    • Kim, G.1    Ahn, S.2    Yoon, H.3
  • 66
    • 0032471714 scopus 로고    scopus 로고
    • Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels
    • Kim SS, Utsunomiya H, Koski JA, et al. 1998; Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228(1): 8-13.
    • (1998) Ann Surg , vol.228 , Issue.1 , pp. 8-13
    • Kim, S.S.1    Utsunomiya, H.2    Koski, J.A.3
  • 67
    • 84861199493 scopus 로고    scopus 로고
    • Skin tissue generation by laser cell printing
    • Koch L, Deiwick A, Schlie S, et al. 2012; Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7): 1855-1863.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.7 , pp. 1855-1863
    • Koch, L.1    Deiwick, A.2    Schlie, S.3
  • 68
    • 0019637045 scopus 로고
    • Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer
    • Kodama H. 1981; Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52(11): 1770-1773.
    • (1981) Rev Sci Instrum , vol.52 , Issue.11 , pp. 1770-1773
    • Kodama, H.1
  • 69
    • 82055184127 scopus 로고    scopus 로고
    • Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
    • Krishna CRK, Ming CL, Gregory EH, et al. 2011; Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication 3(2): 025004.
    • (2011) Biofabrication , vol.3 , Issue.2 , pp. 025004
    • Krishna, C.R.K.1    Ming, C.L.2    Gregory, E.H.3
  • 70
    • 0037205335 scopus 로고    scopus 로고
    • Scaffold development using 3D printing with a starch-based polymer
    • Lam CXF, Mo XM, Teoh SH, et al. 2002; Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C Mater Biol Appl 20(1-2): 49-56.
    • (2002) Mater Sci Eng C Mater Biol Appl , vol.20 , Issue.1-2 , pp. 49-56
    • Lam, C.X.F.1    Mo, X.M.2    Teoh, S.H.3
  • 71
    • 58549096086 scopus 로고    scopus 로고
    • Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification
    • Lan P, Lee J, Seol Y-J, et al. 2009; Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20(1): 271-279.
    • (2009) J Mater Sci Mater Med , vol.20 , Issue.1 , pp. 271-279
    • Lan, P.1    Lee, J.2    Seol, Y.-J.3
  • 72
    • 0034347736 scopus 로고    scopus 로고
    • Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers
    • Landers R, Mülhaupt R. 2000; Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 282(1): 17-21.
    • (2000) Macromol Mater Eng , vol.282 , Issue.1 , pp. 17-21
    • Landers, R.1    Mülhaupt, R.2
  • 73
    • 67349195980 scopus 로고    scopus 로고
    • Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography
    • Lee JW, Ahn G, Kim DS, et al. 2009; Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng 86(4-6): 1465-1467.
    • (2009) Microelectron Eng , vol.86 , Issue.4-6 , pp. 1465-1467
    • Lee, J.W.1    Ahn, G.2    Kim, D.S.3
  • 74
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong KF, Cheah CM, Chua CK. 2003; Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13): 2363-2378.
    • (2003) Biomaterials , vol.24 , Issue.13 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 75
    • 29144502979 scopus 로고    scopus 로고
    • Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    • Leukers B, Gülkan H, Irsen S, et al. 2005; Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12): 1121-1124.
    • (2005) J Mater Sci Mater Med , vol.16 , Issue.12 , pp. 1121-1124
    • Leukers, B.1    Gülkan, H.2    Irsen, S.3
  • 76
    • 85062993816 scopus 로고    scopus 로고
    • CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant
    • Levy RA, Chu TM, Halloran JW, et al. 1999; CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant. J Neuroophthalmol 19(2): 1522-1525.
    • (1999) J Neuroophthalmol , vol.19 , Issue.2 , pp. 1522-1525
    • Levy, R.A.1    Chu, T.M.2    Halloran, J.W.3
  • 77
    • 70349295993 scopus 로고    scopus 로고
    • Use of Osteoplug polycaprolactone implants as novel burr-hole covers
    • Low SW, Ng YJ, Yeo TT, et al. 2009; Use of Osteoplug polycaprolactone implants as novel burr-hole covers. Singapore Med J 50(8): 777-780.
    • (2009) Singapore Med J , vol.50 , Issue.8 , pp. 777-780
    • Low, S.W.1    Ng, Y.J.2    Yeo, T.T.3
  • 78
    • 33748922161 scopus 로고    scopus 로고
    • A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds
    • Lu Y, Mapili G, Suhali G, et al. 2006; A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77A(2): 396-405.
    • (2006) J Biomed Mater Res A , vol.77 A , Issue.2 , pp. 396-405
    • Lu, Y.1    Mapili, G.2    Suhali, G.3
  • 79
    • 34547399078 scopus 로고    scopus 로고
    • Fab@Home: the personal desktop fabricator kit
    • Malone E, Lipson H. 2007; Fab@Home: the personal desktop fabricator kit. Rapid Prototyp J 13(4): 245-255.
    • (2007) Rapid Prototyp J , vol.13 , Issue.4 , pp. 245-255
    • Malone, E.1    Lipson, H.2
  • 80
    • 37349091115 scopus 로고    scopus 로고
    • Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends
    • Mano JF, Silva GA, Azevedo HS, et al. 2007; Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17): 999-1030.
    • (2007) J R Soc Interface , vol.4 , Issue.17 , pp. 999-1030
    • Mano, J.F.1    Silva, G.A.2    Azevedo, H.S.3
  • 81
    • 77956915095 scopus 로고    scopus 로고
    • Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration
    • Martinez-Vazquez FJ, Perera FH, Miranda P, et al. 2010; Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 6(11): 4361-4368.
    • (2010) Acta Biomater , vol.6 , Issue.11 , pp. 4361-4368
    • Martinez-Vazquez, F.J.1    Perera, F.H.2    Miranda, P.3
  • 82
    • 77956902833 scopus 로고    scopus 로고
    • Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing
    • Melchels FP, Barradas AM, van Blitterswijk CA, et al. 2010a; Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6(11): 4208-4217.
    • (2010) Acta Biomater , vol.6 , Issue.11 , pp. 4208-4217
    • Melchels, F.P.1    Barradas, A.M.2    van Blitterswijk, C.A.3
  • 83
    • 67349157548 scopus 로고    scopus 로고
    • A poly( d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography
    • Melchels FP, Feijen J, Grijpma DW. 2009; A poly( d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23-24): 3801-3809.
    • (2009) Biomaterials , vol.30 , Issue.23-24 , pp. 3801-3809
    • Melchels, F.P.1    Feijen, J.2    Grijpma, D.W.3
  • 84
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • Melchels FPW, Feijen J, Grijpma DW. 2010b; A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24): 6121-6130.
    • (2010) Biomaterials , vol.31 , Issue.24 , pp. 6121-6130
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 85
    • 83655202836 scopus 로고    scopus 로고
    • Three-dimensional printing of a bioactive glass
    • Meszaros R, Zhao R, Travitzky N, et al. 2011; Three-dimensional printing of a bioactive glass. Glass Technol A 52(4): 111-116.
    • (2011) Glass Technol A , vol.52 , Issue.4 , pp. 111-116
    • Meszaros, R.1    Zhao, R.2    Travitzky, N.3
  • 86
    • 40449137701 scopus 로고    scopus 로고
    • Mechanical properties of calcium phosphate scaffolds fabricated by robocasting
    • Miranda P, Pajares A, Saiz E, et al. 2008; Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A 85A(1): 218-227.
    • (2008) J Biomed Mater Res A , vol.85 A , Issue.1 , pp. 218-227
    • Miranda, P.1    Pajares, A.2    Saiz, E.3
  • 87
    • 33744832163 scopus 로고    scopus 로고
    • Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications
    • Miranda P, Saiz E, Gryn K, et al. 2006; Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2(4): 457-466.
    • (2006) Acta Biomater , vol.2 , Issue.4 , pp. 457-466
    • Miranda, P.1    Saiz, E.2    Gryn, K.3
  • 88
    • 0242668870 scopus 로고    scopus 로고
    • Organ printing: computer-aided jet-based 3D tissue engineering
    • Mironov V, Boland T, Trusk T, et al. 2003; Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4): 157-161.
    • (2003) Trends Biotechnol , vol.21 , Issue.4 , pp. 157-161
    • Mironov, V.1    Boland, T.2    Trusk, T.3
  • 89
    • 80053384750 scopus 로고    scopus 로고
    • Organ printing: from bioprinter to organ biofabrication line
    • Mironov V, Kasyanov V, Markwald RR. 2011; Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5): 667-673.
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.5 , pp. 667-673
    • Mironov, V.1    Kasyanov, V.2    Markwald, R.R.3
  • 90
  • 91
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni L, de Wijn JR, van Blitterswijk CA. 2006; 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7): 974-985.
    • (2006) Biomaterials , vol.27 , Issue.7 , pp. 974-985
    • Moroni, L.1    de Wijn, J.R.2    van Blitterswijk, C.A.3
  • 92
    • 38449087800 scopus 로고    scopus 로고
    • 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
    • Moroni L, Schotel R, Hamann D, et al. 2008; 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Funct Mater 18(1): 53-60.
    • (2008) Adv Funct Mater , vol.18 , Issue.1 , pp. 53-60
    • Moroni, L.1    Schotel, R.2    Hamann, D.3
  • 93
    • 85204820449 scopus 로고    scopus 로고
    • Process and equipment for rapid fabrication through bioextrusion. Portuguese Patent No. 104247.
    • Mota C, Mateus A, Bártolo PJ, et al. 2009; Process and equipment for rapid fabrication through bioextrusion. Portuguese Patent No. 104247.
    • (2009)
    • Mota, C.1    Mateus, A.2    Bártolo, P.J.3
  • 94
    • 84889576149 scopus 로고    scopus 로고
    • Dual-scale polymeric constructs as scaffolds for tissue engineering
    • Mota C, Puppi D, Dinucci D, et al. 2011; Dual-scale polymeric constructs as scaffolds for tissue engineering. Materials 4(3): 527-542.
    • (2011) Materials , vol.4 , Issue.3 , pp. 527-542
    • Mota, C.1    Puppi, D.2    Dinucci, D.3
  • 95
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C, Marga FS, Niklason LE, et al. 2009; Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30): 5910-5917.
    • (2009) Biomaterials , vol.30 , Issue.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3
  • 96
    • 85204827909 scopus 로고    scopus 로고
    • [Accessed 15 June 2012]
    • Osteopore International: www.osteopore.com.sg/ [Accessed 15 June 2012]
    • (2012) Osteopore International
  • 97
    • 52649179274 scopus 로고    scopus 로고
    • Single-cell printing to form three-dimensional lines of olfactory ensheathing cells
    • Othon CM, Wu XJ, Anders JJ, et al. 2008; Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3(3): 034101.
    • (2008) Biomed Mater , vol.3 , Issue.3 , pp. 034101
    • Othon, C.M.1    Wu, X.J.2    Anders, J.J.3
  • 98
    • 45849109215 scopus 로고    scopus 로고
    • Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials
    • Ovsianikov A, Schlie S, Ngezahayo A, et al. 2007; Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J Tissue Eng Regen Med 1(6): 443-449.
    • (2007) J Tissue Eng Regen Med , vol.1 , Issue.6 , pp. 443-449
    • Ovsianikov, A.1    Schlie, S.2    Ngezahayo, A.3
  • 99
    • 81455158865 scopus 로고    scopus 로고
    • PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™
    • Pirlo RK, Wu P, Liu J, et al. 2012; PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™. Biotechnol Bioeng 109(1): 262-273.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.1 , pp. 262-273
    • Pirlo, R.K.1    Wu, P.2    Liu, J.3
  • 100
    • 63049117306 scopus 로고    scopus 로고
    • Synthetic polymer scaffolds for tissue engineering
    • Place ES, George JH, Williams CK, et al. 2009; Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4): 1139-1151.
    • (2009) Chem Soc Rev , vol.38 , Issue.4 , pp. 1139-1151
    • Place, E.S.1    George, J.H.2    Williams, C.K.3
  • 101
    • 77649158306 scopus 로고    scopus 로고
    • Polymeric materials for bone and cartilage repair
    • Puppi D, Chiellini F, Piras AM, et al. 2010a; Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4): 403-440.
    • (2010) Prog Polym Sci , vol.35 , Issue.4 , pp. 403-440
    • Puppi, D.1    Chiellini, F.2    Piras, A.M.3
  • 102
    • 76949105501 scopus 로고    scopus 로고
    • Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid
    • Puppi D, Piras AM, Detta N, et al. 2010b; Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomater 6(4): 1258-1268.
    • (2010) Acta Biomater , vol.6 , Issue.4 , pp. 1258-1268
    • Puppi, D.1    Piras, A.M.2    Detta, N.3
  • 103
    • 78650277207 scopus 로고    scopus 로고
    • Machine design and processing considerations for the 3D plotting of thermoplastic scaffolds
    • Ragaert K, Cardon L, Dekeyser A, et al. 2010; Machine design and processing considerations for the 3D plotting of thermoplastic scaffolds. Biofabrication 2(1): 014107.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 014107
    • Ragaert, K.1    Cardon, L.2    Dekeyser, A.3
  • 104
    • 77956010965 scopus 로고    scopus 로고
    • Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds
    • Rai B, Lin JL, Lim ZXH, et al. 2010; Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials 31(31): 7960-7970.
    • (2010) Biomaterials , vol.31 , Issue.31 , pp. 7960-7970
    • Rai, B.1    Lin, J.L.2    Lim, Z.X.H.3
  • 105
    • 2342628508 scopus 로고    scopus 로고
    • Laser printing of pluripotent embryonal carcinoma cells
    • Ringeisen BR, Kim H, Barron JA, et al. 2004; Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10(3-4): 483-491.
    • (2004) Tissue Eng , vol.10 , Issue.3-4 , pp. 483-491
    • Ringeisen, B.R.1    Kim, H.2    Barron, J.A.3
  • 106
    • 34249828915 scopus 로고    scopus 로고
    • Jet-based methods to print living cells
    • Ringeisen BR, Othon CM, Barron JA, et al. 2006; Jet-based methods to print living cells. Biotechnol J 1(9): 930-948.
    • (2006) Biotechnol J , vol.1 , Issue.9 , pp. 930-948
    • Ringeisen, B.R.1    Othon, C.M.2    Barron, J.A.3
  • 107
    • 0042773945 scopus 로고    scopus 로고
    • In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig
    • Rohner D, Hutmacher DW, Cheng TK, et al. 2003; In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 66B(2): 574-580.
    • (2003) J Biomed Mater Res B Appl Biomater , vol.66 B , Issue.2 , pp. 574-580
    • Rohner, D.1    Hutmacher, D.W.2    Cheng, T.K.3
  • 108
    • 35048849578 scopus 로고    scopus 로고
    • Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting
    • Russias J, Saiz E, Deville S, et al. 2007; Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res A 83(2): 434-445.
    • (2007) J Biomed Mater Res A , vol.83 , Issue.2 , pp. 434-445
    • Russias, J.1    Saiz, E.2    Deville, S.3
  • 109
    • 58149204685 scopus 로고
    • Three-dimensional printing: rapid tooling and prototypes directly from a CAD model
    • Sachs E, Cima M, Cornie J. 1990; Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann Manuf Technol 39(1): 201-204.
    • (1990) CIRP Ann Manuf Technol , vol.39 , Issue.1 , pp. 201-204
    • Sachs, E.1    Cima, M.2    Cornie, J.3
  • 110
    • 85204852701 scopus 로고
    • Three-dimensional printing techniques. US Patent No. 5204055A.
    • Sachs EM, Haggerty JS, Cima MJ, et al. 1993; Three-dimensional printing techniques. US Patent No. 5204055A.
    • (1993)
    • Sachs, E.M.1    Haggerty, J.S.2    Cima, M.J.3
  • 111
    • 35549011970 scopus 로고    scopus 로고
    • Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
    • Saunders RE, Gough JE, Derby B. 2008; Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2): 193-203.
    • (2008) Biomaterials , vol.29 , Issue.2 , pp. 193-203
    • Saunders, R.E.1    Gough, J.E.2    Derby, B.3
  • 112
    • 33644612205 scopus 로고    scopus 로고
    • Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report
    • ONS-E176; discussion, ONS-E176.
    • Schantz JT, Lim TC, Ning C, et al. 2006; Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Neurosurgery 58(1, suppl): ONS-E176; discussion, ONS-E176.
    • (2006) Neurosurgery , vol.58 , Issue.1
    • Schantz, J.T.1    Lim, T.C.2    Ning, C.3
  • 113
    • 23044436691 scopus 로고    scopus 로고
    • Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering
    • Seitz H, Rieder W, Irsen S, et al. 2005, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2): 782-788.
    • (2005) J Biomed Mater Res B Appl Biomater , vol.74 , Issue.2 , pp. 782-788
    • Seitz, H.1    Rieder, W.2    Irsen, S.3
  • 114
    • 77951170998 scopus 로고    scopus 로고
    • Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes
    • Shanjani Y, De Croos JN, Pilliar RM, et al. 2010; Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J Biomed Mater Res B Appl Biomater 93(2): 510-519.
    • (2010) J Biomed Mater Res B Appl Biomater , vol.93 , Issue.2 , pp. 510-519
    • Shanjani, Y.1    De Croos, J.N.2    Pilliar, R.M.3
  • 115
    • 77956761652 scopus 로고    scopus 로고
    • Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
    • Shor L, Guceri S, Chang R, et al. 2009; Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1(1): 015003.
    • (2009) Biofabrication , vol.1 , Issue.1 , pp. 015003
    • Shor, L.1    Guceri, S.2    Chang, R.3
  • 116
    • 79959242988 scopus 로고    scopus 로고
    • Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system
    • Shuai C, Gao C, Nie Y, et al. 2011; Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 22(28): 285703.
    • (2011) Nanotechnology , vol.22 , Issue.28 , pp. 285703
    • Shuai, C.1    Gao, C.2    Nie, Y.3
  • 117
    • 77049084341 scopus 로고    scopus 로고
    • Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair
    • Silva NA, Salgado AJ, Sousa RA, et al. 2010; Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair. Tissue Eng Part A 16(1): 45-54.
    • (2010) Tissue Eng Part A , vol.16 , Issue.1 , pp. 45-54
    • Silva, N.A.1    Salgado, A.J.2    Sousa, R.A.3
  • 118
    • 84655175084 scopus 로고    scopus 로고
    • Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair
    • Silva NA, Sousa RA, Pires AO, et al. 2011; Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. J Biomed Mater Res A 100A(2): 470-476.
    • (2011) J Biomed Mater Res A , vol.100 A , Issue.2 , pp. 470-476
    • Silva, N.A.1    Sousa, R.A.2    Pires, A.O.3
  • 119
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • Skardal A, Zhang J, Prestwich GD. 2010; Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24): 6173-6181.
    • (2010) Biomaterials , vol.31 , Issue.24 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 120
    • 79251617418 scopus 로고    scopus 로고
    • Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
    • Sobral JM, Caridade SG, Sousa RA, et al. 2011; Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3): 1009-1018.
    • (2011) Acta Biomater , vol.7 , Issue.3 , pp. 1009-1018
    • Sobral, J.M.1    Caridade, S.G.2    Sousa, R.A.3
  • 121
    • 27944466697 scopus 로고    scopus 로고
    • Exploring and engineering the cell surface interface
    • Stevens MM, George JH. 2005; Exploring and engineering the cell surface interface. Science 310(5751): 1135-1138.
    • (2005) Science , vol.310 , Issue.5751 , pp. 1135-1138
    • Stevens, M.M.1    George, J.H.2
  • 122
    • 0036142463 scopus 로고    scopus 로고
    • Recent development on computer aided tissue engineering - a review
    • Sun W, Lal P. 2002; Recent development on computer aided tissue engineering - a review. Comput Methods Programs Biomed 67(2): 85-103.
    • (2002) Comput Methods Programs Biomed , vol.67 , Issue.2 , pp. 85-103
    • Sun, W.1    Lal, P.2
  • 123
    • 0041670837 scopus 로고    scopus 로고
    • Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
    • Tan KH, Chua CK, Leong KF, et al. 2003; Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24(18): 3115-3123.
    • (2003) Biomaterials , vol.24 , Issue.18 , pp. 3115-3123
    • Tan, K.H.1    Chua, C.K.2    Leong, K.F.3
  • 124
    • 84880702026 scopus 로고    scopus 로고
    • Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
    • Tarafder S, Balla VK, Davies NM, et al. 2012; Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med; DOI: 10.1002/term.1555
    • (2012) J Tissue Eng Regen Med
    • Tarafder, S.1    Balla, V.K.2    Davies, N.M.3
  • 125
    • 79960230357 scopus 로고    scopus 로고
    • Substrate stiffness influences high resolution printing of living cells with an ink-jet system
    • Tirella A, Vozzi F, De Maria C, et al. 2011a; Substrate stiffness influences high resolution printing of living cells with an ink-jet system. J Biosci Bioeng 112(1): 79-85.
    • (2011) J Biosci Bioeng , vol.112 , Issue.1 , pp. 79-85
    • Tirella, A.1    Vozzi, F.2    De Maria, C.3
  • 126
    • 79551520270 scopus 로고    scopus 로고
    • PAM2 (piston assisted microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds
    • Tirella A, Vozzi F, Vozzi G, et al. 2011; PAM2 (piston assisted microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds. Tissue Eng Part C Methods 17(2): 229-237.
    • (2011) Tissue Eng Part C Methods , vol.17 , Issue.2 , pp. 229-237
    • Tirella, A.1    Vozzi, F.2    Vozzi, G.3
  • 127
    • 4444314207 scopus 로고    scopus 로고
    • Three-dimensional tissue fabrication
    • Tsang VL, Bhatia SN. 2004; Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11): 1635-1647.
    • (2004) Adv Drug Deliv Rev , vol.56 , Issue.11 , pp. 1635-1647
    • Tsang, V.L.1    Bhatia, S.N.2
  • 128
    • 12444253950 scopus 로고    scopus 로고
    • Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition
    • Vozzi G, Flaim C, Ahluwalia A, et al. 2003; Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24(14): 2533-2540.
    • (2003) Biomaterials , vol.24 , Issue.14 , pp. 2533-2540
    • Vozzi, G.1    Flaim, C.2    Ahluwalia, A.3
  • 129
    • 0036892817 scopus 로고    scopus 로고
    • Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering
    • Vozzi G, Previti A, De Rossi D, et al. 2002; Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8(6): 1089-1098.
    • (2002) Tissue Eng , vol.8 , Issue.6 , pp. 1089-1098
    • Vozzi, G.1    Previti, A.2    De Rossi, D.3
  • 130
    • 1142277581 scopus 로고    scopus 로고
    • Precision extruding deposition and characterization of cellular poly(ε{lunate}-caprolactone) tissue scaffolds
    • Wang F, Shor L, Darling A, et al. 2004; Precision extruding deposition and characterization of cellular poly(ε{lunate}-caprolactone) tissue scaffolds. Rapid Prototyping J 10(1): 42-49.
    • (2004) Rapid Prototyping J , vol.10 , Issue.1 , pp. 42-49
    • Wang, F.1    Shor, L.2    Darling, A.3
  • 131
    • 0030352442 scopus 로고    scopus 로고
    • Influence of process parameters on stereolithography part shrinkage
    • Wang WL, Cheah CM, Fuh JYH, et al. 1996; Influence of process parameters on stereolithography part shrinkage. Mater Design 17(4): 205-213.
    • (1996) Mater Design , vol.17 , Issue.4 , pp. 205-213
    • Wang, W.L.1    Cheah, C.M.2    Fuh, J.Y.H.3
  • 132
    • 73349133674 scopus 로고    scopus 로고
    • Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application
    • Weià T, Hildebrand G, Schade R, et al. 2009; Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng Life Sci 9(5): 384-390.
    • (2009) Eng Life Sci , vol.9 , Issue.5 , pp. 384-390
    • WeiÃ, T.1    Hildebrand, G.2    Schade, R.3
  • 134
    • 44949223637 scopus 로고    scopus 로고
    • Porous ceramic bone scaffolds for vascularized bone tissue regeneration
    • Will J, Melcher R, Treul C, et al. 2008; Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J Mater Sci Mater Med 19(8): 2781-2790.
    • (2008) J Mater Sci Mater Med , vol.19 , Issue.8 , pp. 2781-2790
    • Will, J.1    Melcher, R.2    Treul, C.3
  • 135
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • Williams JM, Adewunmi A, Schek RM, et al. 2005; Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23): 4817-4827.
    • (2005) Biomaterials , vol.26 , Issue.23 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3
  • 136
    • 33751346057 scopus 로고    scopus 로고
    • Poly-ε{lunate}-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • Wiria FE, Leong KF, Chua CK, et al. 2007; Poly-ε{lunate}-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1): 1-12.
    • (2007) Acta Biomater , vol.3 , Issue.1 , pp. 1-12
    • Wiria, F.E.1    Leong, K.F.2    Chua, C.K.3
  • 137
    • 77957588918 scopus 로고    scopus 로고
    • The return of a forgotten polymer - polycaprolactone in the 21st century
    • Woodruff MA, Hutmacher DW. 2010; The return of a forgotten polymer - polycaprolactone in the 21st century. Prog Polym Sci 35(10): 1217-1256.
    • (2010) Prog Polym Sci , vol.35 , Issue.10 , pp. 1217-1256
    • Woodruff, M.A.1    Hutmacher, D.W.2
  • 138
    • 77955280239 scopus 로고    scopus 로고
    • Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)
    • Wu PK, Ringeisen BR. 2010; Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2(1): 014111.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 014111
    • Wu, P.K.1    Ringeisen, B.R.2
  • 139
    • 0037036044 scopus 로고    scopus 로고
    • Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition
    • Xiong Z, Yan Y, Wang S, et al. 2002; Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11): 771-776.
    • (2002) Scr Mater , vol.46 , Issue.11 , pp. 771-776
    • Xiong, Z.1    Yan, Y.2    Wang, S.3
  • 140
    • 79952110839 scopus 로고    scopus 로고
    • Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering
    • Xu M, Li Y, Suo H, et al. 2010; Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Biofabrication 2(2): 025002.
    • (2010) Biofabrication , vol.2 , Issue.2 , pp. 025002
    • Xu, M.1    Li, Y.2    Suo, H.3
  • 141
    • 77956633477 scopus 로고    scopus 로고
    • Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
    • Yeong WY, Sudarmadji N, Yu HY, et al. 2010; Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6(6): 2028-2034.
    • (2010) Acta Biomater , vol.6 , Issue.6 , pp. 2028-2034
    • Yeong, W.Y.1    Sudarmadji, N.2    Yu, H.Y.3
  • 142
    • 84882261344 scopus 로고    scopus 로고
    • An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects
    • Yilgor P, Yilmaz G, Onal MB, et al. 2012; An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects. J Tissue Eng Regen Med; DOI: 10.1002/term.1456
    • (2012) J Tissue Eng Regen Med
    • Yilgor, P.1    Yilmaz, G.2    Onal, M.B.3
  • 143
    • 85204828082 scopus 로고    scopus 로고
    • Delivery system. US Patent No. 2011/0172611 A1.
    • Yoo JJ, Atala A, Binder KW, et al. 2011; Delivery system. US Patent No. 2011/0172611 A1.
    • (2011)
    • Yoo, J.J.1    Atala, A.2    Binder, K.W.3
  • 144
    • 84867858774 scopus 로고    scopus 로고
    • Selective laser sintering of poly(l-lactide)/carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering
    • In, Eberli D (ed.). InTech: Vukovar, Croatia
    • Zhou WY, Wang M, Cheung WL, et al. 2010; Selective laser sintering of poly(l-lactide)/carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering. In Tissue Engineering, Eberli D (ed.). InTech: Vukovar, Croatia; 179-204.
    • (2010) Tissue Engineering , pp. 179-204
    • Zhou, W.Y.1    Wang, M.2    Cheung, W.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.