메뉴 건너뛰기




Volumn 5, Issue 1, 2011, Pages 57-68

Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation

Author keywords

cell behaviour; nanocomposite scaffold; physical entrapment; selective laser sintering; surface modification

Indexed keywords


EID: 79952721140     PISSN: 16737377     EISSN: 16737482     Source Type: Journal    
DOI: 10.1007/s11706-011-0101-0     Document Type: Article
Times cited : (20)

References (33)
  • 1
    • 34250380895 scopus 로고    scopus 로고
    • 3D polymer scaffolds for tissue engineering
    • Seunarine K, Gadegaard N, Tormen M, et al. 3D polymer scaffolds for tissue engineering. Nanomedicine, 2006, 1(3): 281-296.
    • (2006) Nanomedicine , vol.1 , Issue.3 , pp. 281-296
    • Seunarine, K.1    Gadegaard, N.2    Tormen, M.3
  • 2
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518-524.
    • (2005) Nature Materials , vol.4 , Issue.7 , pp. 518-524
    • Hollister, S.J.1
  • 3
    • 57049163042 scopus 로고    scopus 로고
    • From material to tissue: Biomaterial development, scaffold fabrication, and tissue engineering
    • Kretlow J D, Mikos A G. From material to tissue: Biomaterial development, scaffold fabrication, and tissue engineering. AIChE Journal, 2008, 54(12): 3048-3067.
    • (2008) AIChE Journal , vol.54 , Issue.12 , pp. 3048-3067
    • Kretlow, J.D.1    Mikos, A.G.2
  • 4
    • 58149389514 scopus 로고    scopus 로고
    • Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering
    • Rosa A L, de Oliveira P T, Beloti M M. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Expert Review of Medical Devices, 2008, 5(6): 719-728.
    • (2008) Expert Review of Medical Devices , vol.5 , Issue.6 , pp. 719-728
    • Rosa, A.L.1    de Oliveira, P.T.2    Beloti, M.M.3
  • 5
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong K F, Cheah C M, Chua C K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003, 24(13): 2363-2378.
    • (2003) Biomaterials , vol.24 , Issue.13 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 6
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: rationale for computer-aided design and solid freeform fabrication systems
    • Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid freeform fabrication systems. Trends in Biotechnology, 2004, 22(7): 354-362.
    • (2004) Trends in Biotechnology , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 7
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: challenges and potential
    • Yeong W Y, Chua C K, Leong K F, et al. Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology, 2004, 22(12): 643-652.
    • (2004) Trends in Biotechnology , vol.22 , Issue.12 , pp. 643-652
    • Yeong, W.Y.1    Chua, C.K.2    Leong, K.F.3
  • 8
    • 0026909122 scopus 로고
    • Solid freeform manufacturing-possibilities and restrictions
    • Kochan D. Solid freeform manufacturing-possibilities and restrictions. Computers in Industry, 1992, 20(2): 133-140.
    • (1992) Computers in Industry , vol.20 , Issue.2 , pp. 133-140
    • Kochan, D.1
  • 9
    • 0035870103 scopus 로고    scopus 로고
    • Three-dimensional microimaging (MRmicrol and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis
    • Borah B, Gross G J, Dufresne T E, et al. Three-dimensional microimaging (MRmicrol and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. The Anatomical Record, 2001, 265(2): 101-110.
    • (2001) The Anatomical Record , vol.265 , Issue.2 , pp. 101-110
    • Borah, B.1    Gross, G.J.2    Dufresne, T.E.3
  • 11
    • 0030034976 scopus 로고    scopus 로고
    • Role of material surfaces in regulating bone and cartilage cell response
    • Boyan B D, Hummert T W, Dean D D, et al. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17(2): 137-146.
    • (1996) Biomaterials , vol.17 , Issue.2 , pp. 137-146
    • Boyan, B.D.1    Hummert, T.W.2    Dean, D.D.3
  • 12
    • 35649005383 scopus 로고    scopus 로고
    • Surface modification and property analysis of biomedical polymers used for tissue engineering
    • Ma Z W, Mao Z W, Gao C Y. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2007, 60(2): 137-157.
    • (2007) Colloids and Surfaces B: Biointerfaces , vol.60 , Issue.2 , pp. 137-157
    • Ma, Z.W.1    Mao, Z.W.2    Gao, C.Y.3
  • 13
    • 34250862636 scopus 로고    scopus 로고
    • Polymer surface modification for the attachment of bioactive compounds
    • Goddard J M, Hotchkiss J H. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007, 32(7): 698-725.
    • (2007) Progress in Polymer Science , vol.32 , Issue.7 , pp. 698-725
    • Goddard, J.M.1    Hotchkiss, J.H.2
  • 14
    • 48449090600 scopus 로고    scopus 로고
    • Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co-ε-caprolactone) substrates
    • Shin Y M, Kim K-S, Lim Y M, et al. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co-ε-caprolactone) substrates. Biomacromolecules, 2008, 9(7): 1772-1781.
    • (2008) Biomacromolecules , vol.9 , Issue.7 , pp. 1772-1781
    • Shin, Y.M.1    Kim, K.-S.2    Lim, Y.M.3
  • 15
    • 77958101381 scopus 로고    scopus 로고
    • Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
    • doi: 10. 1016/j. actbio. 2010. 06. 024 (in press)
    • Duan B, Wang M, Zhou W Y, et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomaterialia, 2010, doi: 10. 1016/j. actbio. 2010. 06. 024 (in press).
    • (2010) Acta Biomaterialia
    • Duan, B.1    Wang, M.2    Zhou, W.Y.3
  • 16
    • 54349122765 scopus 로고    scopus 로고
    • Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV microspheres for bone tissue engineering applications
    • Duan B, Wang M, Zhou W Y, et al. Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV microspheres for bone tissue engineering applications. Applied Surface Science, 2008, 255(2): 529-533.
    • (2008) Applied Surface Science , vol.255 , Issue.2 , pp. 529-533
    • Duan, B.1    Wang, M.2    Zhou, W.Y.3
  • 17
    • 72949101766 scopus 로고    scopus 로고
    • Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres
    • Zhou W Y, Lee S H, Wang M, et al. Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. Journal of Materials Science: Materials in Medicine, 2008, 19(7): 2535-2540.
    • (2008) Journal of Materials Science: Materials in Medicine , vol.19 , Issue.7 , pp. 2535-2540
    • Zhou, W.Y.1    Lee, S.H.2    Wang, M.3
  • 18
    • 0027113195 scopus 로고
    • Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical application
    • Desai N P, Hubbell J A. Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical application. Macromolecules, 1992, 25(1): 226-232.
    • (1992) Macromolecules , vol.25 , Issue.1 , pp. 226-232
    • Desai, N.P.1    Hubbell, J.A.2
  • 19
    • 0033874663 scopus 로고    scopus 로고
    • Surface engineering of poly(lactic acid) by entrapment of modifying species
    • Quirk R A, Davies M C, Tendler S J B, et al. Surface engineering of poly(lactic acid) by entrapment of modifying species. Macromolecules, 2000, 33(2): 258-260.
    • (2000) Macromolecules , vol.33 , Issue.2 , pp. 258-260
    • Quirk, R.A.1    Davies, M.C.2    Tendler, S.J.B.3
  • 20
    • 33644894497 scopus 로고    scopus 로고
    • Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices
    • Kumar A, Bansal V, Nandakumar K S, et al. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices. Biotechnology and Bioengineering, 2006, 93(4): 636-646.
    • (2006) Biotechnology and Bioengineering , vol.93 , Issue.4 , pp. 636-646
    • Kumar, A.1    Bansal, V.2    Nandakumar, K.S.3
  • 21
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
    • (2005) Biomaterials , vol.26 , Issue.27 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 22
    • 4544273208 scopus 로고    scopus 로고
    • Bone tissue engineering: state of the art and future trends
    • Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience, 2004, 4(8): 743-765.
    • (2004) Macromolecular Bioscience , vol.4 , Issue.8 , pp. 743-765
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 23
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • Williams J M, Adewunmi A, Schek R M, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005, 26(23): 4817-4827.
    • (2005) Biomaterials , vol.26 , Issue.23 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3
  • 25
    • 0033961642 scopus 로고    scopus 로고
    • Osteoblast adhesion on biomaterials
    • Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667-681.
    • (2000) Biomaterials , vol.21 , Issue.7 , pp. 667-681
    • Anselme, K.1
  • 26
    • 44249125049 scopus 로고    scopus 로고
    • Improved biomaterials for tissue engineering applications: surface modification of polymers
    • Katti D S, Vasita R, Shanmugam K. Improved biomaterials for tissue engineering applications: surface modification of polymers. Current Topics in Medicinal Chemistry, 2008, 8(4): 341-353.
    • (2008) Current Topics in Medicinal Chemistry , vol.8 , Issue.4 , pp. 341-353
    • Katti, D.S.1    Vasita, R.2    Shanmugam, K.3
  • 27
    • 34447268985 scopus 로고    scopus 로고
    • Silk coatings on PLGA and alginate microspheres for protein delivery
    • Wang X Q, Wenk E, Hu X, et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials, 2007, 28(28): 4161-4169.
    • (2007) Biomaterials , vol.28 , Issue.28 , pp. 4161-4169
    • Wang, X.Q.1    Wenk, E.2    Hu, X.3
  • 28
    • 36849031316 scopus 로고    scopus 로고
    • Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation
    • Lee J-Y, Choo J-E, Choi Y-S, et al. Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. Journal of Biomedical Materials Research, Part A, 2007, 83A(4): 970-979.
    • (2007) Journal of Biomedical Materials Research, Part A , vol.83 A , Issue.4 , pp. 970-979
    • Lee, J.-Y.1    Choo, J.-E.2    Choi, Y.-S.3
  • 29
    • 34249892189 scopus 로고    scopus 로고
    • Surface modification of threedimensional poly(d,l-lactic acid) scaffolds with baicalin: a histological study
    • Cai K Y, Yao K D, Yang Z M, et al. Surface modification of threedimensional poly(d, l-lactic acid) scaffolds with baicalin: a histological study. Acta Biomaterialia, 2007, 3(4): 597-605.
    • (2007) Acta Biomaterialia , vol.3 , Issue.4 , pp. 597-605
    • Cai, K.Y.1    Yao, K.D.2    Yang, Z.M.3
  • 30
    • 36849005481 scopus 로고    scopus 로고
    • Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility
    • Liu Z H, Jiao Y P, Zhang Z Y, et al. Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility. Journal of Biomedical Materials Research, Part A, 2007, 83A(4): 1110-1116.
    • (2007) Journal of Biomedical Materials Research, Part A , vol.83 A , Issue.4 , pp. 1110-1116
    • Liu, Z.H.1    Jiao, Y.P.2    Zhang, Z.Y.3
  • 32
    • 57449107325 scopus 로고    scopus 로고
    • Effect of nicotine in matrix mineralization by human bone marrow and Saos-2 cells cultured on the surface of plasma-sprayed titanium implants
    • Pereira M L, Carvalho J C, Peres F, et al. Effect of nicotine in matrix mineralization by human bone marrow and Saos-2 cells cultured on the surface of plasma-sprayed titanium implants. Journal of Biomedical Materials Research, Part A, 2009, 88A(1): 84-93.
    • (2009) Journal of Biomedical Materials Research, Part A , vol.88 A , Issue.1 , pp. 84-93
    • Pereira, M.L.1    Carvalho, J.C.2    Peres, F.3
  • 33
    • 51849084188 scopus 로고    scopus 로고
    • Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures
    • Amaral M, Dias A G, Gomes P S, et al. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. Journal of Biomedical Materials Research, Part A, 2008, 87A(1): 91-99.
    • (2008) Journal of Biomedical Materials Research, Part A , vol.87 A , Issue.1 , pp. 91-99
    • Amaral, M.1    Dias, A.G.2    Gomes, P.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.