-
2
-
-
0027751663
-
The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
-
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843-854.
-
(1993)
Cell
, vol.75
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
3
-
-
0027730383
-
Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
-
Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75:855-862.
-
(1993)
Cell
, vol.75
, pp. 855-862
-
-
Wightman, B.1
Ha, I.2
Ruvkun, G.3
-
4
-
-
0037009364
-
MicroRNA maturation: stepwise processing and subcellular localization
-
Lee Y., Jeon K., Lee J.T., Kim S., Kim V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002, 21:4663-4670.
-
(2002)
EMBO J
, vol.21
, pp. 4663-4670
-
-
Lee, Y.1
Jeon, K.2
Lee, J.T.3
Kim, S.4
Kim, V.N.5
-
5
-
-
80053574171
-
Mirtrons: microRNA biogenesis via splicing
-
Westholm J.O., Lai E.C. Mirtrons: microRNA biogenesis via splicing. Biochimie 2011, 93:1897-1904.
-
(2011)
Biochimie
, vol.93
, pp. 1897-1904
-
-
Westholm, J.O.1
Lai, E.C.2
-
6
-
-
80053574876
-
From snoRNA to miRNA: dual function regulatory non-coding RNAs
-
Scott M.S., Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 2011, 93:1987-1992.
-
(2011)
Biochimie
, vol.93
, pp. 1987-1992
-
-
Scott, M.S.1
Ono, M.2
-
7
-
-
60149086351
-
Origin, biogenesis, and activity of plant microRNAs
-
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136:669-687.
-
(2009)
Cell
, vol.136
, pp. 669-687
-
-
Voinnet, O.1
-
8
-
-
33846927800
-
Ribonuclease revisited: structural insights into ribonuclease III family enzymes
-
MacRae I.J., Doudna J.A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 2007, 17:138-145.
-
(2007)
Curr Opin Struct Biol
, vol.17
, pp. 138-145
-
-
MacRae, I.J.1
Doudna, J.A.2
-
9
-
-
0038054468
-
RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns
-
Danin-Kreiselman M., Lee C.Y., Chanfreau G. RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 2003, 11:1279-1289.
-
(2003)
Mol Cell
, vol.11
, pp. 1279-1289
-
-
Danin-Kreiselman, M.1
Lee, C.Y.2
Chanfreau, G.3
-
10
-
-
30844438338
-
Structural basis for double-stranded RNA processing by Dicer
-
MacRae I.J., et al. Structural basis for double-stranded RNA processing by Dicer. Science 2006, 311:195-198.
-
(2006)
Science
, vol.311
, pp. 195-198
-
-
MacRae, I.J.1
-
11
-
-
70350510820
-
RNAi in budding yeast
-
Drinnenberg I.A., et al. RNAi in budding yeast. Science 2009, 326:544-550.
-
(2009)
Science
, vol.326
, pp. 544-550
-
-
Drinnenberg, I.A.1
-
12
-
-
79960186717
-
The inside-out mechanism of Dicers from budding yeasts
-
Weinberg D.E., Nakanishi K., Patel D.J., Bartel D.P. The inside-out mechanism of Dicers from budding yeasts. Cell 2011, 146:262-276.
-
(2011)
Cell
, vol.146
, pp. 262-276
-
-
Weinberg, D.E.1
Nakanishi, K.2
Patel, D.J.3
Bartel, D.P.4
-
13
-
-
84856005348
-
Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation
-
Bernstein D.A., Vyas V.K., Weinberg D.E., Drinnenberg I.A., Bartel D.P., Fink G.R. Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci USA 2012, 109:523-528.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 523-528
-
-
Bernstein, D.A.1
Vyas, V.K.2
Weinberg, D.E.3
Drinnenberg, I.A.4
Bartel, D.P.5
Fink, G.R.6
-
14
-
-
0034711308
-
Human RNase III is a 160-kDa protein involved in preribosomal RNA processing
-
Wu H., Xu H., Miraglia L.J., Crooke S.T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000, 275:36957-36965.
-
(2000)
J Biol Chem
, vol.275
, pp. 36957-36965
-
-
Wu, H.1
Xu, H.2
Miraglia, L.J.3
Crooke, S.T.4
-
15
-
-
79959455595
-
Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing
-
Liang X.H., Crooke S.T. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing. Nucleic Acids Res 2011, 39:4875-4889.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 4875-4889
-
-
Liang, X.H.1
Crooke, S.T.2
-
16
-
-
34247876168
-
DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs
-
Fukuda T., et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007, 9:604-611.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 604-611
-
-
Fukuda, T.1
-
17
-
-
0141843656
-
The nuclear RNase III Drosha initiates microRNA processing
-
Lee Y., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415-419.
-
(2003)
Nature
, vol.425
, pp. 415-419
-
-
Lee, Y.1
-
18
-
-
10644234841
-
The Drosha-DGCR8 complex in primary microRNA processing
-
Han J., Lee Y., Yeom K.H., Kim Y.K., Jin H., Kim V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18:3016-3027.
-
(2004)
Genes Dev
, vol.18
, pp. 3016-3027
-
-
Han, J.1
Lee, Y.2
Yeom, K.H.3
Kim, Y.K.4
Jin, H.5
Kim, V.N.6
-
19
-
-
9144224451
-
Processing of primary microRNAs by the Microprocessor complex
-
Denli A.M., Tops B.B., Plasterk R.H., Ketting R.F., Hannon G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432:231-235.
-
(2004)
Nature
, vol.432
, pp. 231-235
-
-
Denli, A.M.1
Tops, B.B.2
Plasterk, R.H.3
Ketting, R.F.4
Hannon, G.J.5
-
20
-
-
9144225636
-
The Microprocessor complex mediates the genesis of microRNAs
-
Gregory R.I., et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432:235-240.
-
(2004)
Nature
, vol.432
, pp. 235-240
-
-
Gregory, R.I.1
-
21
-
-
10344248903
-
The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis
-
Landthaler M., Yalcin A., Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004, 14:2162-2167.
-
(2004)
Curr Biol
, vol.14
, pp. 2162-2167
-
-
Landthaler, M.1
Yalcin, A.2
Tuschl, T.3
-
22
-
-
78650324516
-
Solution structure of the Drosha double-stranded RNA-binding domain
-
Mueller G.A., Miller M.T., Derose E.F., Ghosh M., London R.E., Hall T.M. Solution structure of the Drosha double-stranded RNA-binding domain. Silence 2010, 1:2.
-
(2010)
Silence
, vol.1
, pp. 2
-
-
Mueller, G.A.1
Miller, M.T.2
Derose, E.F.3
Ghosh, M.4
London, R.E.5
Hall, T.M.6
-
23
-
-
78650396433
-
Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA " microprocessor" complex
-
Wostenberg C., Quarles K.A., Showalter S.A. Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA " microprocessor" complex. Biochemistry 2010, 49:10728-10736.
-
(2010)
Biochemistry
, vol.49
, pp. 10728-10736
-
-
Wostenberg, C.1
Quarles, K.A.2
Showalter, S.A.3
-
24
-
-
0142247418
-
The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity
-
Gupta V., Huang X., Patel R.C. The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology 2003, 315:283-291.
-
(2003)
Virology
, vol.315
, pp. 283-291
-
-
Gupta, V.1
Huang, X.2
Patel, R.C.3
-
25
-
-
27144550559
-
TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing
-
Haase A.D., et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 2005, 6:961-967.
-
(2005)
EMBO Rep
, vol.6
, pp. 961-967
-
-
Haase, A.D.1
-
26
-
-
0345600247
-
A protein interaction map of Drosophila melanogaster
-
Giot L., et al. A protein interaction map of Drosophila melanogaster. Science 2003, 302:1727-1736.
-
(2003)
Science
, vol.302
, pp. 1727-1736
-
-
Giot, L.1
-
27
-
-
33847323881
-
DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal
-
Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007, 39:380-385.
-
(2007)
Nat Genet
, vol.39
, pp. 380-385
-
-
Wang, Y.1
Medvid, R.2
Melton, C.3
Jaenisch, R.4
Blelloch, R.5
-
28
-
-
58849163116
-
DGCR8-dependent microRNA biogenesis is essential for skin development
-
Yi R., et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci USA 2009, 106:498-502.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 498-502
-
-
Yi, R.1
-
29
-
-
36048958883
-
Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins
-
Shiohama A., Sasaki T., Noda S., Minoshima S., Shimizu N. Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007, 313:4196-4207.
-
(2007)
Exp Cell Res
, vol.313
, pp. 4196-4207
-
-
Shiohama, A.1
Sasaki, T.2
Noda, S.3
Minoshima, S.4
Shimizu, N.5
-
30
-
-
33744520104
-
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
-
Han J., et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125:887-901.
-
(2006)
Cell
, vol.125
, pp. 887-901
-
-
Han, J.1
-
31
-
-
33846065567
-
Heme is involved in microRNA processing
-
Faller M., Matsunaga M., Yin S., Loo J.A., Guo F. Heme is involved in microRNA processing. Nat Struct Mol Biol 2007, 14:23-29.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 23-29
-
-
Faller, M.1
Matsunaga, M.2
Yin, S.3
Loo, J.A.4
Guo, F.5
-
32
-
-
33749984008
-
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
-
Yeom K.H., Lee Y., Han J., Suh M.R., Kim V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006, 34:4622-4629.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4622-4629
-
-
Yeom, K.H.1
Lee, Y.2
Han, J.3
Suh, M.R.4
Kim, V.N.5
-
33
-
-
0037466486
-
Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region
-
Shiohama A., Sasaki T., Noda S., Minoshima S., Shimizu N. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun 2003, 304:184-190.
-
(2003)
Biochem Biophys Res Commun
, vol.304
, pp. 184-190
-
-
Shiohama, A.1
Sasaki, T.2
Noda, S.3
Minoshima, S.4
Shimizu, N.5
-
34
-
-
23044485188
-
The WW domain
-
Wiley-VCH, Weinheim, Germany, G. Cesareni, M. Gimona, M. Sudol, M. Yaffe (Eds.)
-
Sudol M. The WW domain. Modular protein domains 2005, 59-72. Wiley-VCH, Weinheim, Germany. G. Cesareni, M. Gimona, M. Sudol, M. Yaffe (Eds.).
-
(2005)
Modular protein domains
, pp. 59-72
-
-
Sudol, M.1
-
35
-
-
78049290801
-
Modularity in the Hippo signaling pathway
-
Sudol M., Harvey K.F. Modularity in the Hippo signaling pathway. Trends Biochem Sci 2010, 35:627-633.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 627-633
-
-
Sudol, M.1
Harvey, K.F.2
-
36
-
-
84861434708
-
Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8
-
Gong M., Chen Y., Senturia R., Ulgherait M., Faller M., Guo F. Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8. Protein Sci 2012, 21:797-808.
-
(2012)
Protein Sci
, vol.21
, pp. 797-808
-
-
Gong, M.1
Chen, Y.2
Senturia, R.3
Ulgherait, M.4
Faller, M.5
Guo, F.6
-
37
-
-
84863624496
-
Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8
-
Senturia R., Laganowsky A., Barr I., Scheidemantle B.D., Guo F. Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8. PLoS One 2012, 7:e39688.
-
(2012)
PLoS One
, vol.7
-
-
Senturia, R.1
Laganowsky, A.2
Barr, I.3
Scheidemantle, B.D.4
Guo, F.5
-
38
-
-
84863116288
-
Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing
-
Barr I., Smith A.T., Chen Y., Senturia R., Burstyn J.N., Guo F. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci USA 2012, 109:1919-1924.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 1919-1924
-
-
Barr, I.1
Smith, A.T.2
Chen, Y.3
Senturia, R.4
Burstyn, J.N.5
Guo, F.6
-
39
-
-
34548480185
-
Crystal structure of human DGCR8 core
-
Sohn S.Y., Bae W.J., Kim J.J., Yeom K.H., Kim V.N., Cho Y. Crystal structure of human DGCR8 core. Nat Struct Mol Biol 2007, 14:847-853.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 847-853
-
-
Sohn, S.Y.1
Bae, W.J.2
Kim, J.J.3
Yeom, K.H.4
Kim, V.N.5
Cho, Y.6
-
40
-
-
77954378538
-
MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding
-
Wostenberg C., Noid W.G., Showalter S.A. MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding. Biophys J 2010, 99:248-256.
-
(2010)
Biophys J
, vol.99
, pp. 248-256
-
-
Wostenberg, C.1
Noid, W.G.2
Showalter, S.A.3
-
41
-
-
77953965778
-
Structure of the dimerization domain of DiGeorge Critical Region 8
-
Senturia R., et al. Structure of the dimerization domain of DiGeorge Critical Region 8. Protein Sci 2010, 19:1354-1365.
-
(2010)
Protein Sci
, vol.19
, pp. 1354-1365
-
-
Senturia, R.1
-
43
-
-
0036260085
-
Structure-function relationships in heme-proteins
-
Paoli M., Marles-Wright J., Smith A. Structure-function relationships in heme-proteins. DNA Cell Biol 2002, 21:271-280.
-
(2002)
DNA Cell Biol
, vol.21
, pp. 271-280
-
-
Paoli, M.1
Marles-Wright, J.2
Smith, A.3
-
44
-
-
0003631066
-
-
Springer, New York, NY
-
Ortiz de Montellano P.R. Cytochrome P450: structure, mechanism, and biochemistry 2004, Springer, New York, NY. 3rd ed.
-
(2004)
Cytochrome P450: structure, mechanism, and biochemistry
-
-
Ortiz de Montellano, P.R.1
-
45
-
-
79955769519
-
DiGeorge Critical Region 8 (DGCR8) is a double-cysteine-ligated heme protein
-
Barr I., et al. DiGeorge Critical Region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem 2011, 286:16716-16725.
-
(2011)
J Biol Chem
, vol.286
, pp. 16716-16725
-
-
Barr, I.1
-
46
-
-
77952738956
-
22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia
-
Karayiorgou M., Simon T.J., Gogos J.A. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010, 11:402-416.
-
(2010)
Nat Rev Neurosci
, vol.11
, pp. 402-416
-
-
Karayiorgou, M.1
Simon, T.J.2
Gogos, J.A.3
-
47
-
-
43949124669
-
Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model
-
Stark K.L., et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008, 40:751-760.
-
(2008)
Nat Genet
, vol.40
, pp. 751-760
-
-
Stark, K.L.1
-
48
-
-
79952733634
-
Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex
-
Fenelon K., et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 2011, 108:4447-4452.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 4447-4452
-
-
Fenelon, K.1
-
49
-
-
79953278448
-
Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex
-
Schofield C.M., Hsu R., Barker A.J., Gertz C.C., Blelloch R., Ullian E.M. Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex. Neural Dev 2011, 6:11.
-
(2011)
Neural Dev
, vol.6
, pp. 11
-
-
Schofield, C.M.1
Hsu, R.2
Barker, A.J.3
Gertz, C.C.4
Blelloch, R.5
Ullian, E.M.6
-
50
-
-
11844262661
-
Phylogenetic shadowing and computational identification of human microRNA genes
-
Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R.H., Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005, 120:21-24.
-
(2005)
Cell
, vol.120
, pp. 21-24
-
-
Berezikov, E.1
Guryev, V.2
van de Belt, J.3
Wienholds, E.4
Plasterk, R.H.5
Cuppen, E.6
-
51
-
-
0037423845
-
Vertebrate microRNA genes
-
Lim L.P., Glasner M.E., Yekta S., Burge C.B., Bartel D.P. Vertebrate microRNA genes. Science 2003, 299:1540.
-
(2003)
Science
, vol.299
, pp. 1540
-
-
Lim, L.P.1
Glasner, M.E.2
Yekta, S.3
Burge, C.B.4
Bartel, D.P.5
-
52
-
-
40449139010
-
The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data
-
Parisien M., Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008, 452:51-55.
-
(2008)
Nature
, vol.452
, pp. 51-55
-
-
Parisien, M.1
Major, F.2
-
53
-
-
0036294527
-
Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells
-
Zeng Y., Wagner E.J., Cullen B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002, 9:1327-1333.
-
(2002)
Mol Cell
, vol.9
, pp. 1327-1333
-
-
Zeng, Y.1
Wagner, E.J.2
Cullen, B.R.3
-
54
-
-
0037273432
-
Sequence requirements for micro RNA processing and function in human cells
-
Zeng Y., Cullen B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 2003, 9:112-123.
-
(2003)
RNA
, vol.9
, pp. 112-123
-
-
Zeng, Y.1
Cullen, B.R.2
-
55
-
-
27644436787
-
Second-generation shRNA libraries covering the mouse and human genomes
-
Silva J.M., et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005, 37:1281-1288.
-
(2005)
Nat Genet
, vol.37
, pp. 1281-1288
-
-
Silva, J.M.1
-
56
-
-
23044502585
-
Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences
-
Zeng Y., Cullen B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 2005, 280:27595-27603.
-
(2005)
J Biol Chem
, vol.280
, pp. 27595-27603
-
-
Zeng, Y.1
Cullen, B.R.2
-
57
-
-
12544255565
-
Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha
-
Zeng Y., Yi R., Cullen B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 2005, 24:138-148.
-
(2005)
EMBO J
, vol.24
, pp. 138-148
-
-
Zeng, Y.1
Yi, R.2
Cullen, B.R.3
-
58
-
-
78649870594
-
The terminal loop region controls microRNA processing by Drosha and Dicer
-
Zhang X., Zeng Y. The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res 2010, 38:7689-7697.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 7689-7697
-
-
Zhang, X.1
Zeng, Y.2
-
59
-
-
77955119567
-
DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures
-
Faller M., et al. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA 2010, 16:1570-1583.
-
(2010)
RNA
, vol.16
, pp. 1570-1583
-
-
Faller, M.1
-
60
-
-
0035085466
-
Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions
-
Juneau K., Podell E., Harrington D.J., Cech T.R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure 2001, 9:221-231.
-
(2001)
Structure
, vol.9
, pp. 221-231
-
-
Juneau, K.1
Podell, E.2
Harrington, D.J.3
Cech, T.R.4
-
61
-
-
58149097010
-
Posttranscriptional crossregulation between Drosha and DGCR8
-
Han J., et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 2009, 136:75-84.
-
(2009)
Cell
, vol.136
, pp. 75-84
-
-
Han, J.1
-
62
-
-
66449118741
-
Post-transcriptional control of DGCR8 expression by the Microprocessor
-
Triboulet R., Chang H.M., Lapierre R.J., Gregory R.I. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 2009, 15:1005-1011.
-
(2009)
RNA
, vol.15
, pp. 1005-1011
-
-
Triboulet, R.1
Chang, H.M.2
Lapierre, R.J.3
Gregory, R.I.4
-
63
-
-
62549120015
-
Genome-wide identification of targets of the drosha-pasha/DGCR8 complex
-
Kadener S., et al. Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. RNA 2009, 15:537-545.
-
(2009)
RNA
, vol.15
, pp. 537-545
-
-
Kadener, S.1
-
64
-
-
84861909806
-
Efficiency and specificity in microRNA biogenesis
-
Barad O., et al. Efficiency and specificity in microRNA biogenesis. Nat Struct Mol Biol 2012, 19:650-652.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 650-652
-
-
Barad, O.1
-
65
-
-
84856413303
-
Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8
-
Wada T., Kikuchi J., Furukawa Y. Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 2012, 13:142-149.
-
(2012)
EMBO Rep
, vol.13
, pp. 142-149
-
-
Wada, T.1
Kikuchi, J.2
Furukawa, Y.3
-
66
-
-
67349200238
-
Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1
-
Ghodgaonkar M.M., et al. Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1. Cell Death Differ 2009, 16:858-868.
-
(2009)
Cell Death Differ
, vol.16
, pp. 858-868
-
-
Ghodgaonkar, M.M.1
-
67
-
-
45349107435
-
Stimuli-dependent cleavage of Dicer during apoptosis
-
Matskevich A.A., Moelling K. Stimuli-dependent cleavage of Dicer during apoptosis. Biochem J 2008, 412:527-534.
-
(2008)
Biochem J
, vol.412
, pp. 527-534
-
-
Matskevich, A.A.1
Moelling, K.2
-
68
-
-
78049390388
-
Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization
-
Tang X., Zhang Y., Tucker L., Ramratnam B. Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res 2010, 38:6610-6619.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6610-6619
-
-
Tang, X.1
Zhang, Y.2
Tucker, L.3
Ramratnam, B.4
-
69
-
-
79958051537
-
Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302
-
Tang X., Li M., Tucker L., Ramratnam B. Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS One 2011, 6:e20391.
-
(2011)
PLoS One
, vol.6
-
-
Tang, X.1
Li, M.2
Tucker, L.3
Ramratnam, B.4
-
70
-
-
77649129121
-
GSK3: a multifaceted kinase in Wnt signaling
-
Wu D., Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010, 35:161-168.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 161-168
-
-
Wu, D.1
Pan, W.2
-
71
-
-
67749143728
-
Modulation of microRNA processing by p53
-
Suzuki H.I., Yamagata K., Sugimoto K., Iwamoto T., Kato S., Miyazono K. Modulation of microRNA processing by p53. Nature 2009, 460:529-533.
-
(2009)
Nature
, vol.460
, pp. 529-533
-
-
Suzuki, H.I.1
Yamagata, K.2
Sugimoto, K.3
Iwamoto, T.4
Kato, S.5
Miyazono, K.6
-
72
-
-
46449128469
-
SMAD proteins control DROSHA-mediated microRNA maturation
-
Davis B.N., Hilyard A.C., Lagna G., Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008, 454:56-61.
-
(2008)
Nature
, vol.454
, pp. 56-61
-
-
Davis, B.N.1
Hilyard, A.C.2
Lagna, G.3
Hata, A.4
-
73
-
-
67649277689
-
The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs
-
Trabucchi M., et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009, 459:1010-1014.
-
(2009)
Nature
, vol.459
, pp. 1010-1014
-
-
Trabucchi, M.1
-
74
-
-
40849108663
-
Selective blockade of microRNA processing by Lin28
-
Viswanathan S.R., Daley G.Q., Gregory R.I. Selective blockade of microRNA processing by Lin28. Science 2008, 320:97-100.
-
(2008)
Science
, vol.320
, pp. 97-100
-
-
Viswanathan, S.R.1
Daley, G.Q.2
Gregory, R.I.3
-
75
-
-
81855183636
-
Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms
-
Piskounova E., et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2011, 147:1066-1079.
-
(2011)
Cell
, vol.147
, pp. 1066-1079
-
-
Piskounova, E.1
-
76
-
-
70349187028
-
Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8
-
Shenoy A., Blelloch R. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8. PLoS One 2009, 4:e6971.
-
(2009)
PLoS One
, vol.4
-
-
Shenoy, A.1
Blelloch, R.2
-
77
-
-
84864688599
-
DGCR8 HITS-CLIP reveals novel functions for the Microprocessor
-
Macias S., Plass M., Stajuda A., Michlewski G., Eyras E., Caceres J.F. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol 2012, 19:760-766.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 760-766
-
-
Macias, S.1
Plass, M.2
Stajuda, A.3
Michlewski, G.4
Eyras, E.5
Caceres, J.F.6
|