메뉴 건너뛰기




Volumn 32, Issue , 2012, Pages 101-121

Drosha and DGCR8 in MicroRNA Biogenesis

Author keywords

DiGeorge syndrome; Gene regulation; Heme; Hemoprotein; MicroRNA; Molecular recognition; Ribonuclease; RNA processing; RNA binding protein; RNase III; WW motif

Indexed keywords


EID: 84869225192     PISSN: 18746047     EISSN: None     Source Type: Book Series    
DOI: 10.1016/B978-0-12-404741-9.00005-2     Document Type: Chapter
Times cited : (3)

References (77)
  • 2
    • 0027751663 scopus 로고
    • The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843-854.
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 3
    • 0027730383 scopus 로고
    • Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
    • Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75:855-862.
    • (1993) Cell , vol.75 , pp. 855-862
    • Wightman, B.1    Ha, I.2    Ruvkun, G.3
  • 4
    • 0037009364 scopus 로고    scopus 로고
    • MicroRNA maturation: stepwise processing and subcellular localization
    • Lee Y., Jeon K., Lee J.T., Kim S., Kim V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002, 21:4663-4670.
    • (2002) EMBO J , vol.21 , pp. 4663-4670
    • Lee, Y.1    Jeon, K.2    Lee, J.T.3    Kim, S.4    Kim, V.N.5
  • 5
    • 80053574171 scopus 로고    scopus 로고
    • Mirtrons: microRNA biogenesis via splicing
    • Westholm J.O., Lai E.C. Mirtrons: microRNA biogenesis via splicing. Biochimie 2011, 93:1897-1904.
    • (2011) Biochimie , vol.93 , pp. 1897-1904
    • Westholm, J.O.1    Lai, E.C.2
  • 6
    • 80053574876 scopus 로고    scopus 로고
    • From snoRNA to miRNA: dual function regulatory non-coding RNAs
    • Scott M.S., Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 2011, 93:1987-1992.
    • (2011) Biochimie , vol.93 , pp. 1987-1992
    • Scott, M.S.1    Ono, M.2
  • 7
    • 60149086351 scopus 로고    scopus 로고
    • Origin, biogenesis, and activity of plant microRNAs
    • Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136:669-687.
    • (2009) Cell , vol.136 , pp. 669-687
    • Voinnet, O.1
  • 8
    • 33846927800 scopus 로고    scopus 로고
    • Ribonuclease revisited: structural insights into ribonuclease III family enzymes
    • MacRae I.J., Doudna J.A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 2007, 17:138-145.
    • (2007) Curr Opin Struct Biol , vol.17 , pp. 138-145
    • MacRae, I.J.1    Doudna, J.A.2
  • 9
    • 0038054468 scopus 로고    scopus 로고
    • RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns
    • Danin-Kreiselman M., Lee C.Y., Chanfreau G. RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 2003, 11:1279-1289.
    • (2003) Mol Cell , vol.11 , pp. 1279-1289
    • Danin-Kreiselman, M.1    Lee, C.Y.2    Chanfreau, G.3
  • 10
    • 30844438338 scopus 로고    scopus 로고
    • Structural basis for double-stranded RNA processing by Dicer
    • MacRae I.J., et al. Structural basis for double-stranded RNA processing by Dicer. Science 2006, 311:195-198.
    • (2006) Science , vol.311 , pp. 195-198
    • MacRae, I.J.1
  • 11
    • 70350510820 scopus 로고    scopus 로고
    • RNAi in budding yeast
    • Drinnenberg I.A., et al. RNAi in budding yeast. Science 2009, 326:544-550.
    • (2009) Science , vol.326 , pp. 544-550
    • Drinnenberg, I.A.1
  • 12
    • 79960186717 scopus 로고    scopus 로고
    • The inside-out mechanism of Dicers from budding yeasts
    • Weinberg D.E., Nakanishi K., Patel D.J., Bartel D.P. The inside-out mechanism of Dicers from budding yeasts. Cell 2011, 146:262-276.
    • (2011) Cell , vol.146 , pp. 262-276
    • Weinberg, D.E.1    Nakanishi, K.2    Patel, D.J.3    Bartel, D.P.4
  • 14
    • 0034711308 scopus 로고    scopus 로고
    • Human RNase III is a 160-kDa protein involved in preribosomal RNA processing
    • Wu H., Xu H., Miraglia L.J., Crooke S.T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000, 275:36957-36965.
    • (2000) J Biol Chem , vol.275 , pp. 36957-36965
    • Wu, H.1    Xu, H.2    Miraglia, L.J.3    Crooke, S.T.4
  • 15
    • 79959455595 scopus 로고    scopus 로고
    • Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing
    • Liang X.H., Crooke S.T. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing. Nucleic Acids Res 2011, 39:4875-4889.
    • (2011) Nucleic Acids Res , vol.39 , pp. 4875-4889
    • Liang, X.H.1    Crooke, S.T.2
  • 16
    • 34247876168 scopus 로고    scopus 로고
    • DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs
    • Fukuda T., et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007, 9:604-611.
    • (2007) Nat Cell Biol , vol.9 , pp. 604-611
    • Fukuda, T.1
  • 17
    • 0141843656 scopus 로고    scopus 로고
    • The nuclear RNase III Drosha initiates microRNA processing
    • Lee Y., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415-419.
    • (2003) Nature , vol.425 , pp. 415-419
    • Lee, Y.1
  • 18
    • 10644234841 scopus 로고    scopus 로고
    • The Drosha-DGCR8 complex in primary microRNA processing
    • Han J., Lee Y., Yeom K.H., Kim Y.K., Jin H., Kim V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18:3016-3027.
    • (2004) Genes Dev , vol.18 , pp. 3016-3027
    • Han, J.1    Lee, Y.2    Yeom, K.H.3    Kim, Y.K.4    Jin, H.5    Kim, V.N.6
  • 20
    • 9144225636 scopus 로고    scopus 로고
    • The Microprocessor complex mediates the genesis of microRNAs
    • Gregory R.I., et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432:235-240.
    • (2004) Nature , vol.432 , pp. 235-240
    • Gregory, R.I.1
  • 21
    • 10344248903 scopus 로고    scopus 로고
    • The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis
    • Landthaler M., Yalcin A., Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004, 14:2162-2167.
    • (2004) Curr Biol , vol.14 , pp. 2162-2167
    • Landthaler, M.1    Yalcin, A.2    Tuschl, T.3
  • 23
    • 78650396433 scopus 로고    scopus 로고
    • Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA " microprocessor" complex
    • Wostenberg C., Quarles K.A., Showalter S.A. Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA " microprocessor" complex. Biochemistry 2010, 49:10728-10736.
    • (2010) Biochemistry , vol.49 , pp. 10728-10736
    • Wostenberg, C.1    Quarles, K.A.2    Showalter, S.A.3
  • 24
    • 0142247418 scopus 로고    scopus 로고
    • The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity
    • Gupta V., Huang X., Patel R.C. The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology 2003, 315:283-291.
    • (2003) Virology , vol.315 , pp. 283-291
    • Gupta, V.1    Huang, X.2    Patel, R.C.3
  • 25
    • 27144550559 scopus 로고    scopus 로고
    • TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing
    • Haase A.D., et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 2005, 6:961-967.
    • (2005) EMBO Rep , vol.6 , pp. 961-967
    • Haase, A.D.1
  • 26
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L., et al. A protein interaction map of Drosophila melanogaster. Science 2003, 302:1727-1736.
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1
  • 27
    • 33847323881 scopus 로고    scopus 로고
    • DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal
    • Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007, 39:380-385.
    • (2007) Nat Genet , vol.39 , pp. 380-385
    • Wang, Y.1    Medvid, R.2    Melton, C.3    Jaenisch, R.4    Blelloch, R.5
  • 28
    • 58849163116 scopus 로고    scopus 로고
    • DGCR8-dependent microRNA biogenesis is essential for skin development
    • Yi R., et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci USA 2009, 106:498-502.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 498-502
    • Yi, R.1
  • 29
    • 36048958883 scopus 로고    scopus 로고
    • Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins
    • Shiohama A., Sasaki T., Noda S., Minoshima S., Shimizu N. Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007, 313:4196-4207.
    • (2007) Exp Cell Res , vol.313 , pp. 4196-4207
    • Shiohama, A.1    Sasaki, T.2    Noda, S.3    Minoshima, S.4    Shimizu, N.5
  • 30
    • 33744520104 scopus 로고    scopus 로고
    • Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
    • Han J., et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125:887-901.
    • (2006) Cell , vol.125 , pp. 887-901
    • Han, J.1
  • 32
    • 33749984008 scopus 로고    scopus 로고
    • Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
    • Yeom K.H., Lee Y., Han J., Suh M.R., Kim V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006, 34:4622-4629.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4622-4629
    • Yeom, K.H.1    Lee, Y.2    Han, J.3    Suh, M.R.4    Kim, V.N.5
  • 33
    • 0037466486 scopus 로고    scopus 로고
    • Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region
    • Shiohama A., Sasaki T., Noda S., Minoshima S., Shimizu N. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun 2003, 304:184-190.
    • (2003) Biochem Biophys Res Commun , vol.304 , pp. 184-190
    • Shiohama, A.1    Sasaki, T.2    Noda, S.3    Minoshima, S.4    Shimizu, N.5
  • 34
    • 23044485188 scopus 로고    scopus 로고
    • The WW domain
    • Wiley-VCH, Weinheim, Germany, G. Cesareni, M. Gimona, M. Sudol, M. Yaffe (Eds.)
    • Sudol M. The WW domain. Modular protein domains 2005, 59-72. Wiley-VCH, Weinheim, Germany. G. Cesareni, M. Gimona, M. Sudol, M. Yaffe (Eds.).
    • (2005) Modular protein domains , pp. 59-72
    • Sudol, M.1
  • 35
    • 78049290801 scopus 로고    scopus 로고
    • Modularity in the Hippo signaling pathway
    • Sudol M., Harvey K.F. Modularity in the Hippo signaling pathway. Trends Biochem Sci 2010, 35:627-633.
    • (2010) Trends Biochem Sci , vol.35 , pp. 627-633
    • Sudol, M.1    Harvey, K.F.2
  • 36
    • 84861434708 scopus 로고    scopus 로고
    • Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8
    • Gong M., Chen Y., Senturia R., Ulgherait M., Faller M., Guo F. Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8. Protein Sci 2012, 21:797-808.
    • (2012) Protein Sci , vol.21 , pp. 797-808
    • Gong, M.1    Chen, Y.2    Senturia, R.3    Ulgherait, M.4    Faller, M.5    Guo, F.6
  • 37
    • 84863624496 scopus 로고    scopus 로고
    • Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8
    • Senturia R., Laganowsky A., Barr I., Scheidemantle B.D., Guo F. Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8. PLoS One 2012, 7:e39688.
    • (2012) PLoS One , vol.7
    • Senturia, R.1    Laganowsky, A.2    Barr, I.3    Scheidemantle, B.D.4    Guo, F.5
  • 38
    • 84863116288 scopus 로고    scopus 로고
    • Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing
    • Barr I., Smith A.T., Chen Y., Senturia R., Burstyn J.N., Guo F. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci USA 2012, 109:1919-1924.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 1919-1924
    • Barr, I.1    Smith, A.T.2    Chen, Y.3    Senturia, R.4    Burstyn, J.N.5    Guo, F.6
  • 40
    • 77954378538 scopus 로고    scopus 로고
    • MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding
    • Wostenberg C., Noid W.G., Showalter S.A. MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding. Biophys J 2010, 99:248-256.
    • (2010) Biophys J , vol.99 , pp. 248-256
    • Wostenberg, C.1    Noid, W.G.2    Showalter, S.A.3
  • 41
    • 77953965778 scopus 로고    scopus 로고
    • Structure of the dimerization domain of DiGeorge Critical Region 8
    • Senturia R., et al. Structure of the dimerization domain of DiGeorge Critical Region 8. Protein Sci 2010, 19:1354-1365.
    • (2010) Protein Sci , vol.19 , pp. 1354-1365
    • Senturia, R.1
  • 43
    • 0036260085 scopus 로고    scopus 로고
    • Structure-function relationships in heme-proteins
    • Paoli M., Marles-Wright J., Smith A. Structure-function relationships in heme-proteins. DNA Cell Biol 2002, 21:271-280.
    • (2002) DNA Cell Biol , vol.21 , pp. 271-280
    • Paoli, M.1    Marles-Wright, J.2    Smith, A.3
  • 45
    • 79955769519 scopus 로고    scopus 로고
    • DiGeorge Critical Region 8 (DGCR8) is a double-cysteine-ligated heme protein
    • Barr I., et al. DiGeorge Critical Region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem 2011, 286:16716-16725.
    • (2011) J Biol Chem , vol.286 , pp. 16716-16725
    • Barr, I.1
  • 46
    • 77952738956 scopus 로고    scopus 로고
    • 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia
    • Karayiorgou M., Simon T.J., Gogos J.A. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010, 11:402-416.
    • (2010) Nat Rev Neurosci , vol.11 , pp. 402-416
    • Karayiorgou, M.1    Simon, T.J.2    Gogos, J.A.3
  • 47
    • 43949124669 scopus 로고    scopus 로고
    • Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model
    • Stark K.L., et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008, 40:751-760.
    • (2008) Nat Genet , vol.40 , pp. 751-760
    • Stark, K.L.1
  • 48
    • 79952733634 scopus 로고    scopus 로고
    • Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex
    • Fenelon K., et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 2011, 108:4447-4452.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 4447-4452
    • Fenelon, K.1
  • 49
    • 79953278448 scopus 로고    scopus 로고
    • Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex
    • Schofield C.M., Hsu R., Barker A.J., Gertz C.C., Blelloch R., Ullian E.M. Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex. Neural Dev 2011, 6:11.
    • (2011) Neural Dev , vol.6 , pp. 11
    • Schofield, C.M.1    Hsu, R.2    Barker, A.J.3    Gertz, C.C.4    Blelloch, R.5    Ullian, E.M.6
  • 52
    • 40449139010 scopus 로고    scopus 로고
    • The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data
    • Parisien M., Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008, 452:51-55.
    • (2008) Nature , vol.452 , pp. 51-55
    • Parisien, M.1    Major, F.2
  • 53
    • 0036294527 scopus 로고    scopus 로고
    • Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells
    • Zeng Y., Wagner E.J., Cullen B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002, 9:1327-1333.
    • (2002) Mol Cell , vol.9 , pp. 1327-1333
    • Zeng, Y.1    Wagner, E.J.2    Cullen, B.R.3
  • 54
    • 0037273432 scopus 로고    scopus 로고
    • Sequence requirements for micro RNA processing and function in human cells
    • Zeng Y., Cullen B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 2003, 9:112-123.
    • (2003) RNA , vol.9 , pp. 112-123
    • Zeng, Y.1    Cullen, B.R.2
  • 55
    • 27644436787 scopus 로고    scopus 로고
    • Second-generation shRNA libraries covering the mouse and human genomes
    • Silva J.M., et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005, 37:1281-1288.
    • (2005) Nat Genet , vol.37 , pp. 1281-1288
    • Silva, J.M.1
  • 56
    • 23044502585 scopus 로고    scopus 로고
    • Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences
    • Zeng Y., Cullen B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 2005, 280:27595-27603.
    • (2005) J Biol Chem , vol.280 , pp. 27595-27603
    • Zeng, Y.1    Cullen, B.R.2
  • 57
    • 12544255565 scopus 로고    scopus 로고
    • Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha
    • Zeng Y., Yi R., Cullen B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 2005, 24:138-148.
    • (2005) EMBO J , vol.24 , pp. 138-148
    • Zeng, Y.1    Yi, R.2    Cullen, B.R.3
  • 58
    • 78649870594 scopus 로고    scopus 로고
    • The terminal loop region controls microRNA processing by Drosha and Dicer
    • Zhang X., Zeng Y. The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res 2010, 38:7689-7697.
    • (2010) Nucleic Acids Res , vol.38 , pp. 7689-7697
    • Zhang, X.1    Zeng, Y.2
  • 59
    • 77955119567 scopus 로고    scopus 로고
    • DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures
    • Faller M., et al. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA 2010, 16:1570-1583.
    • (2010) RNA , vol.16 , pp. 1570-1583
    • Faller, M.1
  • 60
    • 0035085466 scopus 로고    scopus 로고
    • Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions
    • Juneau K., Podell E., Harrington D.J., Cech T.R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure 2001, 9:221-231.
    • (2001) Structure , vol.9 , pp. 221-231
    • Juneau, K.1    Podell, E.2    Harrington, D.J.3    Cech, T.R.4
  • 61
    • 58149097010 scopus 로고    scopus 로고
    • Posttranscriptional crossregulation between Drosha and DGCR8
    • Han J., et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 2009, 136:75-84.
    • (2009) Cell , vol.136 , pp. 75-84
    • Han, J.1
  • 62
    • 66449118741 scopus 로고    scopus 로고
    • Post-transcriptional control of DGCR8 expression by the Microprocessor
    • Triboulet R., Chang H.M., Lapierre R.J., Gregory R.I. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 2009, 15:1005-1011.
    • (2009) RNA , vol.15 , pp. 1005-1011
    • Triboulet, R.1    Chang, H.M.2    Lapierre, R.J.3    Gregory, R.I.4
  • 63
    • 62549120015 scopus 로고    scopus 로고
    • Genome-wide identification of targets of the drosha-pasha/DGCR8 complex
    • Kadener S., et al. Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. RNA 2009, 15:537-545.
    • (2009) RNA , vol.15 , pp. 537-545
    • Kadener, S.1
  • 64
    • 84861909806 scopus 로고    scopus 로고
    • Efficiency and specificity in microRNA biogenesis
    • Barad O., et al. Efficiency and specificity in microRNA biogenesis. Nat Struct Mol Biol 2012, 19:650-652.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 650-652
    • Barad, O.1
  • 65
    • 84856413303 scopus 로고    scopus 로고
    • Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8
    • Wada T., Kikuchi J., Furukawa Y. Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 2012, 13:142-149.
    • (2012) EMBO Rep , vol.13 , pp. 142-149
    • Wada, T.1    Kikuchi, J.2    Furukawa, Y.3
  • 66
    • 67349200238 scopus 로고    scopus 로고
    • Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1
    • Ghodgaonkar M.M., et al. Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1. Cell Death Differ 2009, 16:858-868.
    • (2009) Cell Death Differ , vol.16 , pp. 858-868
    • Ghodgaonkar, M.M.1
  • 67
    • 45349107435 scopus 로고    scopus 로고
    • Stimuli-dependent cleavage of Dicer during apoptosis
    • Matskevich A.A., Moelling K. Stimuli-dependent cleavage of Dicer during apoptosis. Biochem J 2008, 412:527-534.
    • (2008) Biochem J , vol.412 , pp. 527-534
    • Matskevich, A.A.1    Moelling, K.2
  • 68
    • 78049390388 scopus 로고    scopus 로고
    • Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization
    • Tang X., Zhang Y., Tucker L., Ramratnam B. Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res 2010, 38:6610-6619.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6610-6619
    • Tang, X.1    Zhang, Y.2    Tucker, L.3    Ramratnam, B.4
  • 69
    • 79958051537 scopus 로고    scopus 로고
    • Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302
    • Tang X., Li M., Tucker L., Ramratnam B. Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS One 2011, 6:e20391.
    • (2011) PLoS One , vol.6
    • Tang, X.1    Li, M.2    Tucker, L.3    Ramratnam, B.4
  • 70
    • 77649129121 scopus 로고    scopus 로고
    • GSK3: a multifaceted kinase in Wnt signaling
    • Wu D., Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010, 35:161-168.
    • (2010) Trends Biochem Sci , vol.35 , pp. 161-168
    • Wu, D.1    Pan, W.2
  • 72
    • 46449128469 scopus 로고    scopus 로고
    • SMAD proteins control DROSHA-mediated microRNA maturation
    • Davis B.N., Hilyard A.C., Lagna G., Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008, 454:56-61.
    • (2008) Nature , vol.454 , pp. 56-61
    • Davis, B.N.1    Hilyard, A.C.2    Lagna, G.3    Hata, A.4
  • 73
    • 67649277689 scopus 로고    scopus 로고
    • The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs
    • Trabucchi M., et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009, 459:1010-1014.
    • (2009) Nature , vol.459 , pp. 1010-1014
    • Trabucchi, M.1
  • 74
    • 40849108663 scopus 로고    scopus 로고
    • Selective blockade of microRNA processing by Lin28
    • Viswanathan S.R., Daley G.Q., Gregory R.I. Selective blockade of microRNA processing by Lin28. Science 2008, 320:97-100.
    • (2008) Science , vol.320 , pp. 97-100
    • Viswanathan, S.R.1    Daley, G.Q.2    Gregory, R.I.3
  • 75
    • 81855183636 scopus 로고    scopus 로고
    • Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms
    • Piskounova E., et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2011, 147:1066-1079.
    • (2011) Cell , vol.147 , pp. 1066-1079
    • Piskounova, E.1
  • 76
    • 70349187028 scopus 로고    scopus 로고
    • Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8
    • Shenoy A., Blelloch R. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8. PLoS One 2009, 4:e6971.
    • (2009) PLoS One , vol.4
    • Shenoy, A.1    Blelloch, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.