-
1
-
-
44849094781
-
Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
-
Morimoto R.I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008, 22:1427-1438.
-
(2008)
Genes Dev.
, vol.22
, pp. 1427-1438
-
-
Morimoto, R.I.1
-
2
-
-
1842782331
-
Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance
-
Sangster T.A., et al. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 2004, 26:348-362.
-
(2004)
Bioessays
, vol.26
, pp. 348-362
-
-
Sangster, T.A.1
-
3
-
-
78149452881
-
Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms
-
Jarosz D.F., et al. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu. Rev. Genet. 2010, 44:189-216.
-
(2010)
Annu. Rev. Genet.
, vol.44
, pp. 189-216
-
-
Jarosz, D.F.1
-
4
-
-
0032569851
-
Hsp90 as a capacitor for morphological evolution
-
Rutherford S.L., Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998, 396:336-342.
-
(1998)
Nature
, vol.396
, pp. 336-342
-
-
Rutherford, S.L.1
Lindquist, S.2
-
5
-
-
35148834805
-
Mutation as a stress response and the regulation of evolvability
-
Galhardo R.S., et al. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 2007, 42:399-435.
-
(2007)
Crit. Rev. Biochem. Mol. Biol.
, vol.42
, pp. 399-435
-
-
Galhardo, R.S.1
-
6
-
-
76349117871
-
Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons
-
Specchia V., et al. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 2010, 463:662-665.
-
(2010)
Nature
, vol.463
, pp. 662-665
-
-
Specchia, V.1
-
7
-
-
77955716080
-
Hsp90 modulates CAG repeat instability in human cells
-
Mittelman D., et al. Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 2010, 15:753-759.
-
(2010)
Cell Stress Chaperones
, vol.15
, pp. 753-759
-
-
Mittelman, D.1
-
8
-
-
80052563657
-
Stress alters rates and types of loss of heterozygosity in Candida albicans
-
Forche A., et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. MBio 2011, 2:e00129-e211.
-
(2011)
MBio
, vol.2
-
-
Forche, A.1
-
9
-
-
84862777815
-
Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy
-
Chen G., et al. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 2012, 482:246-250.
-
(2012)
Nature
, vol.482
, pp. 246-250
-
-
Chen, G.1
-
10
-
-
84857053558
-
The role of Hsp90 in protein complex assembly
-
Makhnevych T., Houry W.A. The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 2012, 1823:674-682.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 674-682
-
-
Makhnevych, T.1
Houry, W.A.2
-
11
-
-
33845959149
-
Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p
-
Catlett M., Kaplan K. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J. Biol. Chem. 2006, 281:33739-33748.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 33739-33748
-
-
Catlett, M.1
Kaplan, K.2
-
13
-
-
0031127737
-
Cdc37: a protein kinase chaperone?
-
Hunter T., Poon R.Y. Cdc37: a protein kinase chaperone?. Trends Cell Biol. 1997, 7:157-161.
-
(1997)
Trends Cell Biol.
, vol.7
, pp. 157-161
-
-
Hunter, T.1
Poon, R.Y.2
-
14
-
-
0030745769
-
Cdc37 is a molecular chaperone with specific functions in signal transduction
-
Kimura Y., et al. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 1997, 11:1775-1785.
-
(1997)
Genes Dev.
, vol.11
, pp. 1775-1785
-
-
Kimura, Y.1
-
15
-
-
84857058279
-
Expanding the cellular molecular chaperone network through the ubiquitous cochaperones
-
Echtenkamp F.J., Freeman B.C. Expanding the cellular molecular chaperone network through the ubiquitous cochaperones. Biochim. Biophys. Acta 2012, 1823:668-673.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 668-673
-
-
Echtenkamp, F.J.1
Freeman, B.C.2
-
16
-
-
19444383801
-
Trading places: how do DNA polymerases switch during translesion DNA synthesis?
-
Friedberg E.C., et al. Trading places: how do DNA polymerases switch during translesion DNA synthesis?. Mol. Cell 2005, 18:499-505.
-
(2005)
Mol. Cell
, vol.18
, pp. 499-505
-
-
Friedberg, E.C.1
-
17
-
-
78449261906
-
Simultaneous disruption of two DNA polymerases, Polη and Polζ, in avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions
-
Hirota K., et al. Simultaneous disruption of two DNA polymerases, Polη and Polζ, in avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions. PLoS Genet. 2010, 6:e1001151.
-
(2010)
PLoS Genet.
, vol.6
-
-
Hirota, K.1
-
18
-
-
36048999739
-
The spectrum of spontaneous mutations caused by deficiency in proteasome maturase Ump1 in Saccharomyces cerevisiae
-
McIntyre J., et al. The spectrum of spontaneous mutations caused by deficiency in proteasome maturase Ump1 in Saccharomyces cerevisiae. Curr. Genet. 2007, 52:221-228.
-
(2007)
Curr. Genet.
, vol.52
, pp. 221-228
-
-
McIntyre, J.1
-
19
-
-
30944459035
-
Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae
-
McIntyre J., et al. Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae. Mutat. Res. 2006, 593:153-163.
-
(2006)
Mutat. Res.
, vol.593
, pp. 153-163
-
-
McIntyre, J.1
-
20
-
-
33846640580
-
Polymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae
-
Skoneczna A., et al. Polymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae. J. Mol. Biol. 2007, 366:1074-1086.
-
(2007)
J. Mol. Biol.
, vol.366
, pp. 1074-1086
-
-
Skoneczna, A.1
-
21
-
-
74049129007
-
The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells
-
Sekimoto T., et al. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells. Mol. Cell 2010, 37:79-89.
-
(2010)
Mol. Cell
, vol.37
, pp. 79-89
-
-
Sekimoto, T.1
-
22
-
-
79961165129
-
Molecular chaperone Hsp90 regulates REV1-mediated mutagenesis
-
Pozo F.M., et al. Molecular chaperone Hsp90 regulates REV1-mediated mutagenesis. Mol. Cell. Biol. 2011, 31:3396-3409.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 3396-3409
-
-
Pozo, F.M.1
-
23
-
-
10044266718
-
Cellular functions of DNA polymerase zeta and Rev1 protein
-
Lawrence C.W. Cellular functions of DNA polymerase zeta and Rev1 protein. Adv. Protein Chem. 2004, 69:167-203.
-
(2004)
Adv. Protein Chem.
, vol.69
, pp. 167-203
-
-
Lawrence, C.W.1
-
24
-
-
0345732688
-
Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
-
Guo C., et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 2003, 22:6621-6630.
-
(2003)
EMBO J.
, vol.22
, pp. 6621-6630
-
-
Guo, C.1
-
25
-
-
4544251295
-
Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein
-
Tissier A., et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein. DNA Repair (Amst.) 2004, 3:1503-1514.
-
(2004)
DNA Repair (Amst.)
, vol.3
, pp. 1503-1514
-
-
Tissier, A.1
-
26
-
-
3042812439
-
Interaction of hREV1 with three human Y-family DNA polymerases
-
Ohashi E., et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 2004, 9:523-531.
-
(2004)
Genes Cells
, vol.9
, pp. 523-531
-
-
Ohashi, E.1
-
27
-
-
84862777927
-
Regulation of Rev1 by the Fanconi anemia core complex
-
Kim H., et al. Regulation of Rev1 by the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 2012, 19:164-170.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 164-170
-
-
Kim, H.1
-
28
-
-
82755184119
-
The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA
-
Crossan G.P., Patel K.J. The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. J. Pathol. 2012, 226:326-337.
-
(2012)
J. Pathol.
, vol.226
, pp. 326-337
-
-
Crossan, G.P.1
Patel, K.J.2
-
29
-
-
79960688447
-
Fanconi anaemia: from a monogenic disease to sporadic cancer
-
Valeri A., et al. Fanconi anaemia: from a monogenic disease to sporadic cancer. Clin. Transl. Oncol. 2011, 13:215-221.
-
(2011)
Clin. Transl. Oncol.
, vol.13
, pp. 215-221
-
-
Valeri, A.1
-
30
-
-
67349227137
-
Replication stress induces sister-chromatid bridging at fragile site loci in mitosis
-
Chan K., et al. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 2009, 11:753-760.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 753-760
-
-
Chan, K.1
-
31
-
-
34249727193
-
Hsp90 regulates the Fanconi anemia DNA damage response pathway
-
Oda T., et al. Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood 2007, 109:5016-5026.
-
(2007)
Blood
, vol.109
, pp. 5016-5026
-
-
Oda, T.1
-
32
-
-
77955716080
-
Hsp90 modulates CAG repeat instability in human cells
-
Mittelman D., et al. Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 2010, 15:753-759.
-
(2010)
Cell Stress Chaperones
, vol.15
, pp. 753-759
-
-
Mittelman, D.1
-
33
-
-
33750696349
-
Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin
-
Noguchi M., et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem. Biophys. Res. Commun. 2006, 351:658-663.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.351
, pp. 658-663
-
-
Noguchi, M.1
-
34
-
-
0347993069
-
Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress
-
Arlander S.J.H., et al. Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J. Biol. Chem. 2003, 278:52572-52577.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 52572-52577
-
-
Arlander, S.J.H.1
-
35
-
-
65549090186
-
DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress
-
Leung-Pineda V., et al. DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res. 2009, 69:2630-2637.
-
(2009)
Cancer Res.
, vol.69
, pp. 2630-2637
-
-
Leung-Pineda, V.1
-
36
-
-
24044476837
-
Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway
-
Zhang Y.-W., et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol. Cell 2005, 19:607-618.
-
(2005)
Mol. Cell
, vol.19
, pp. 607-618
-
-
Zhang, Y.-W.1
-
37
-
-
49649103587
-
Expanded roles for Chk1 in genome maintenance
-
Enders G.H. Expanded roles for Chk1 in genome maintenance. J. Biol. Chem. 2008, 283:17749-17752.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 17749-17752
-
-
Enders, G.H.1
-
38
-
-
0035432062
-
The role of selfish genetic elements in eukaryotic evolution
-
Hurst G.D., Werren J.H. The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet. 2001, 2:597-606.
-
(2001)
Nat. Rev. Genet.
, vol.2
, pp. 597-606
-
-
Hurst, G.D.1
Werren, J.H.2
-
39
-
-
80755169456
-
Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms
-
Juliano C., et al. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 2011, 45:447-469.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 447-469
-
-
Juliano, C.1
-
40
-
-
0037228526
-
Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution
-
Sollars V., et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat. Genet. 2003, 33:70-74.
-
(2003)
Nat. Genet.
, vol.33
, pp. 70-74
-
-
Sollars, V.1
-
41
-
-
79251560849
-
Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation
-
Gangaraju V.K., et al. Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat. Genet. 2011, 43:153-158.
-
(2011)
Nat. Genet.
, vol.43
, pp. 153-158
-
-
Gangaraju, V.K.1
-
42
-
-
84855199318
-
The R2TP complex: discovery and functions
-
Kakihara Y., Houry W.A. The R2TP complex: discovery and functions. Biochim. Biophys. Acta 2012, 1823:101-107.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 101-107
-
-
Kakihara, Y.1
Houry, W.A.2
-
43
-
-
0026013226
-
A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere
-
Lechner J., Carbon J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 1991, 64:717-725.
-
(1991)
Cell
, vol.64
, pp. 717-725
-
-
Lechner, J.1
Carbon, J.2
-
44
-
-
0345255913
-
Structure, function, and regulation of budding yeast kinetochores
-
McAinsh A.D., et al. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 2003, 19:519-539.
-
(2003)
Annu. Rev. Cell Dev. Biol.
, vol.19
, pp. 519-539
-
-
McAinsh, A.D.1
-
45
-
-
0030662073
-
Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation
-
Kaplan K.B., et al. Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell 1997, 91:491-500.
-
(1997)
Cell
, vol.91
, pp. 491-500
-
-
Kaplan, K.B.1
-
46
-
-
3042842156
-
Sgt1p and Skp1p modulate the assembly and turnover of CBF3 complexes required for proper kinetochore function
-
Rodrigo-Brenni M.C., et al. Sgt1p and Skp1p modulate the assembly and turnover of CBF3 complexes required for proper kinetochore function. Mol. Biol. Cell 2004, 15:3366-3378.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3366-3378
-
-
Rodrigo-Brenni, M.C.1
-
47
-
-
0037173049
-
Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore
-
Stemmann O., et al. Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:8585-8590.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 8585-8590
-
-
Stemmann, O.1
-
48
-
-
0033166694
-
SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex
-
Kitagawa K., et al. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 1999, 4:21-33.
-
(1999)
Mol. Cell
, vol.4
, pp. 21-33
-
-
Kitagawa, K.1
-
49
-
-
4744356146
-
The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly
-
Lingelbach L., Kaplan K. The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol. Cell. Biol. 2004, 24:8938-8950.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8938-8950
-
-
Lingelbach, L.1
Kaplan, K.2
-
50
-
-
0033279836
-
SCF and Cullin/Ring H2-based ubiquitin ligases
-
Deshaies R.J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 1999, 15:435-467.
-
(1999)
Annu. Rev. Cell Dev. Biol.
, vol.15
, pp. 435-467
-
-
Deshaies, R.J.1
-
51
-
-
0030695025
-
A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p
-
Feldman R.M., et al. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 1997, 91:221-230.
-
(1997)
Cell
, vol.91
, pp. 221-230
-
-
Feldman, R.M.1
-
52
-
-
34948857409
-
A Bir1p Sli15p kinetochore passenger complex regulates septin organization during anaphase
-
Thomas S., Kaplan K.B. A Bir1p Sli15p kinetochore passenger complex regulates septin organization during anaphase. Mol. Biol. Cell 2007, 18:3820-3834.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 3820-3834
-
-
Thomas, S.1
Kaplan, K.B.2
-
53
-
-
28544442597
-
A novel role for the CBF3 kinetochore-scaffold complex in regulating septin dynamics and cytokinesis
-
Gillis A., et al. A novel role for the CBF3 kinetochore-scaffold complex in regulating septin dynamics and cytokinesis. J. Cell Biol. 2005, 171:773-784.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 773-784
-
-
Gillis, A.1
-
54
-
-
79955499722
-
Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake
-
Rozelle D.K., et al. Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake. J. Cell Biol. 2011, 193:285-294.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 285-294
-
-
Rozelle, D.K.1
-
55
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
-
56
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman I., et al. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.1
-
57
-
-
77951198477
-
Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites
-
Davies A.E., Kaplan K.B. Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites. J. Cell Biol. 2010, 189:261-274.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 261-274
-
-
Davies, A.E.1
Kaplan, K.B.2
-
58
-
-
78649758292
-
Adapt or die: how eukaryotic cells respond to prolonged activation of the spindle assembly checkpoint
-
Rossio V., et al. Adapt or die: how eukaryotic cells respond to prolonged activation of the spindle assembly checkpoint. Biochem. Soc. Trans. 2010, 38:1645-1649.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 1645-1649
-
-
Rossio, V.1
-
59
-
-
80053364894
-
Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations
-
Janssen A., et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011, 333:1895-1898.
-
(2011)
Science
, vol.333
, pp. 1895-1898
-
-
Janssen, A.1
-
60
-
-
84856424908
-
DNA breaks and chromosome pulverization from errors in mitosis
-
Crasta K., et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012, 482:53-58.
-
(2012)
Nature
, vol.482
, pp. 53-58
-
-
Crasta, K.1
-
61
-
-
84857192718
-
Causes and consequences of aneuploidy in cancer
-
Gordon D.J., et al. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 2012, 13:189-203.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 189-203
-
-
Gordon, D.J.1
-
62
-
-
78650033928
-
Somatic genome variations in health and disease
-
Iourov I.Y., et al. Somatic genome variations in health and disease. Curr. Genomics 2010, 11:387-396.
-
(2010)
Curr. Genomics
, vol.11
, pp. 387-396
-
-
Iourov, I.Y.1
-
63
-
-
78649636162
-
Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer
-
Pavelka N., et al. Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer. Curr. Opin. Cell Biol. 2010, 22:809-815.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 809-815
-
-
Pavelka, N.1
-
64
-
-
4944234694
-
Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells
-
Upender M.B., et al. Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res. 2004, 64:6941-6949.
-
(2004)
Cancer Res.
, vol.64
, pp. 6941-6949
-
-
Upender, M.B.1
-
65
-
-
34547433234
-
Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations
-
Gao C., et al. Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:8995-9000.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 8995-9000
-
-
Gao, C.1
-
66
-
-
17444446946
-
Widespread aneuploidy revealed by DNA microarray expression profiling
-
Hughes T.R., et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat. Genet. 2000, 25:333-337.
-
(2000)
Nat. Genet.
, vol.25
, pp. 333-337
-
-
Hughes, T.R.1
-
67
-
-
76549103412
-
Reflections on studies of gene expression in aneuploids
-
Birchler J.A. Reflections on studies of gene expression in aneuploids. Biochem. J. 2010, 426:119-123.
-
(2010)
Biochem. J.
, vol.426
, pp. 119-123
-
-
Birchler, J.A.1
-
68
-
-
78149423336
-
Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast
-
Pavelka N., et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010, 468:321-325.
-
(2010)
Nature
, vol.468
, pp. 321-325
-
-
Pavelka, N.1
-
69
-
-
77952254077
-
A general lack of compensation for gene dosage in yeast
-
Springer M., et al. A general lack of compensation for gene dosage in yeast. Mol. Syst. Biol. 2010, 6:368.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 368
-
-
Springer, M.1
-
70
-
-
77957237291
-
Identification of aneuploidy-tolerating mutations
-
Torres E.M., et al. Identification of aneuploidy-tolerating mutations. Cell 2010, 143:71-83.
-
(2010)
Cell
, vol.143
, pp. 71-83
-
-
Torres, E.M.1
-
71
-
-
56349088536
-
Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor
-
Rancati G., et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 2008, 135:879-893.
-
(2008)
Cell
, vol.135
, pp. 879-893
-
-
Rancati, G.1
-
72
-
-
33746506280
-
Aneuploidy and isochromosome formation in drug-resistant Candida albicans
-
Selmecki A., et al. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313:367-370.
-
(2006)
Science
, vol.313
, pp. 367-370
-
-
Selmecki, A.1
-
73
-
-
73449107205
-
Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance
-
Selmecki A.M., et al. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 2009, 5:e1000705.
-
(2009)
PLoS Genet.
, vol.5
-
-
Selmecki, A.M.1
-
74
-
-
77954047286
-
Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes
-
Sionov E., et al. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010, 6:e1000848.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Sionov, E.1
-
75
-
-
81755183013
-
Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner
-
Semighini C.P., et al. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner. PLoS Pathog. 2011, 7:e1002364.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Semighini, C.P.1
-
76
-
-
58149161888
-
Heat shock induces chromosomal instability in near-tetraploid embryonal carcinoma cells
-
Gupta R.K., Srinivas U.K. Heat shock induces chromosomal instability in near-tetraploid embryonal carcinoma cells. Cancer Biol. Ther. 2008, 7:1471-1480.
-
(2008)
Cancer Biol. Ther.
, vol.7
, pp. 1471-1480
-
-
Gupta, R.K.1
Srinivas, U.K.2
-
77
-
-
0141484615
-
A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors
-
Kamal A., et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425:407-410.
-
(2003)
Nature
, vol.425
, pp. 407-410
-
-
Kamal, A.1
-
78
-
-
84857044092
-
Post-translational modifications of Hsp90 and their contributions to chaperone regulation
-
Mollapour M., Neckers L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim. Biophys. Acta 2012, 1823:648-655.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 648-655
-
-
Mollapour, M.1
Neckers, L.2
-
79
-
-
1942486312
-
CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37
-
Miyata Y., Nishida E. CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol. Cell. Biol. 2004, 24:4065-4074.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4065-4074
-
-
Miyata, Y.1
Nishida, E.2
-
80
-
-
67650539066
-
Sgt1 dimerization is negatively regulated by protein kinase CK2-mediated phosphorylation at Ser361
-
Bansal P.K., et al. Sgt1 dimerization is negatively regulated by protein kinase CK2-mediated phosphorylation at Ser361. J. Biol. Chem. 2009, 284:18692-18698.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18692-18698
-
-
Bansal, P.K.1
-
81
-
-
25844530060
-
Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi
-
Cowen L.E., Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 2005, 309:2185-2189.
-
(2005)
Science
, vol.309
, pp. 2185-2189
-
-
Cowen, L.E.1
Lindquist, S.2
-
82
-
-
84857039457
-
Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers
-
Jhaveri K., et al. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 2012, 1823:742-755.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 742-755
-
-
Jhaveri, K.1
-
83
-
-
81255179936
-
The 26S proteasome complex: an attractive target for cancer therapy
-
Frankland-Searby S., Bhaumik S.R. The 26S proteasome complex: an attractive target for cancer therapy. Biochim. Biophys. Acta 2012, 1825:64-76.
-
(2012)
Biochim. Biophys. Acta
, vol.1825
, pp. 64-76
-
-
Frankland-Searby, S.1
Bhaumik, S.R.2
|