메뉴 건너뛰기




Volumn 26, Issue 18, 2010, Pages 2305-2312

On reverse engineering of gene interaction networks using time course data with repeated measurements

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS; ARABIDOPSIS THALIANA;

EID: 77956537377     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq421     Document Type: Article
Times cited : (31)

References (24)
  • 1
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal,M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1
  • 2
    • 0036791003 scopus 로고    scopus 로고
    • Significance and statistical errors in the analysis of DNA microarray data
    • Brody,J.P. et al. (2002) Significance and statistical errors in the analysis of DNA microarray data. Proc. Natl Acad. Sci. USA, 99, 12975-12978.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 12975-12978
    • Brody, J.P.1
  • 3
    • 47049084462 scopus 로고    scopus 로고
    • Estimating dynamic models for gene regulation networks
    • Cao,J. and Zhao,H. (2008) Estimating dynamic models for gene regulation networks. Bioinformatics, 24, 1619-1624.
    • (2008) Bioinformatics , vol.24 , pp. 1619-1624
    • Cao, J.1    Zhao, H.2
  • 5
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman,N. et al. (2000) Using Bayesian networks to analyze expression data. J. Comput. Biol., 7, 601-620.
    • (2000) J. Comput. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1
  • 6
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman,N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 303, 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 7
    • 75649122871 scopus 로고    scopus 로고
    • The impact of measurement errors in the identification of regulatory networks
    • Fujita,A. et al. (2009) The impact of measurement errors in the identification of regulatory networks. BMC Bioinformatics, 10, 412.
    • (2009) BMC Bioinformatics , vol.10 , pp. 412
    • Fujita, A.1
  • 10
    • 15844429309 scopus 로고    scopus 로고
    • On model expansion, model contraction, identifiability and prior information: two illustrative scenarios involving mismeasured variables
    • Gustafson,P. (2005) On model expansion, model contraction, identifiability and prior information: two illustrative scenarios involving mismeasured variables. Stat. Sci., 20, 111-140.
    • (2005) Stat. Sci. , vol.20 , pp. 111-140
    • Gustafson, P.1
  • 11
    • 68149164746 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks: a comparative study
    • Hache,H. et al. (2009) Reverse engineering of gene regulatory networks: a comparative study. EURASIP J. Bioinform. Syst. Biol., 2009, 1-12.
    • (2009) EURASIP J. Bioinform. Syst. Biol. , vol.2009 , pp. 1-12
    • Hache, H.1
  • 12
    • 18144399354 scopus 로고    scopus 로고
    • Inferring gene transcriptional modulatory relations: a genetical genomics approach
    • Hongqiang,L. et al. (2005) Inferring gene transcriptional modulatory relations: a genetical genomics approach. Human Mol. Genet., 14, 1119-1125.
    • (2005) Human Mol. Genet. , vol.14 , pp. 1119-1125
    • Hongqiang, L.1
  • 13
    • 33845368513 scopus 로고    scopus 로고
    • COPASI: a COmplex PAthway SImulator
    • Hoops,S. et al. (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics, 22, 3067-3074.
    • (2006) Bioinformatics , vol.22 , pp. 3067-3074
    • Hoops, S.1
  • 14
    • 37849035161 scopus 로고    scopus 로고
    • Fully Bayesian mixture model for differential gene expression: simulations and model checks
    • Lewin,A. et al. (2007) Fully Bayesian mixture model for differential gene expression: simulations and model checks. Stat. Appl. Genet. Mol. Biol., 6, 36.
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , pp. 36
    • Lewin, A.1
  • 15
    • 33846050368 scopus 로고    scopus 로고
    • Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana
    • Locke,J.C.W. et al. (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol., 2,59.
    • (2006) Mol. Syst. Biol. , vol.2 , pp. 59
    • Locke, J.C.W.1
  • 16
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data usingd ynamic Bayesian networks
    • Computer Science Division, University of California, Berkeley
    • Murphy,K. and Mian,S. (1999) Modelling gene expression data usingd ynamic Bayesian networks. Technical report, Computer Science Division, University of California, Berkeley.
    • (1999) Technical report
    • Murphy, K.1    Mian, S.2
  • 17
    • 4143058645 scopus 로고    scopus 로고
    • Gene network inference using dynamic Bayesian networks
    • Perrin,B. et al. (2003) Gene network inference using dynamic Bayesian networks. Bioinformatics, 19, ii138-ii148.
    • (2003) Bioinformatics , vol.19
    • Perrin, B.1
  • 18
    • 17944363580 scopus 로고    scopus 로고
    • Revising beliefs in nonidentified models
    • Poirier,D.J. (1998) Revising beliefs in nonidentified models. Econometric Theory, 14, 483-509.
    • (1998) Econometric Theory , vol.14 , pp. 483-509
    • Poirier, D.J.1
  • 19
    • 62449114708 scopus 로고    scopus 로고
    • A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock
    • Pruneda-Paz,J.L. et al. (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science, 323, 1481-1485.
    • (2009) Science , vol.323 , pp. 1481-1485
    • Pruneda-Paz, J.L.1
  • 20
    • 65349190565 scopus 로고    scopus 로고
    • Revolutionary functional genomics liberates CHE
    • Robertson,F.C. and Webb,A.A.R. (2009) Revolutionary functional genomics liberates CHE. Nat. Chem. Biol., 5, 276-277.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 276-277
    • Robertson, F.C.1    Webb, A.A.R.2
  • 21
    • 0038221050 scopus 로고
    • Incorporating measurement error in the estimation of autoregressive models for longitudinal data
    • Schmid,C.H. et al. (1994) Incorporating measurement error in the estimation of autoregressive models for longitudinal data. J. Stat. Plan. Inference, 42, 1-18.
    • (1994) J. Stat. Plan. Inference , vol.42 , pp. 1-18
    • Schmid, C.H.1
  • 22
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith,M. and Kohn,R. (1996) Nonparametric regression using Bayesian variable selection. J. Econom., 75, 317-343.
    • (1996) J. Econom. , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 23
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu,J. et al. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1
  • 24
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou,M. and Conzen,S.D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.