-
1
-
-
67650996280
-
Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease
-
Acloque H., et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 2009, 119:1438-1449.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1438-1449
-
-
Acloque, H.1
-
2
-
-
77957551870
-
A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
Li R., et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7:51-63.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 51-63
-
-
Li, R.1
-
3
-
-
34250784012
-
The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis
-
Ariyaratana S., Loeb D.M. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev. Mol. Med. 2007, 9:1-17.
-
(2007)
Expert Rev. Mol. Med.
, vol.9
, pp. 1-17
-
-
Ariyaratana, S.1
Loeb, D.M.2
-
4
-
-
79151472081
-
Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene
-
Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat. Rev. Cancer 2011, 11:111-121.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 111-121
-
-
Huff, V.1
-
5
-
-
82755163767
-
WT1 in disease: shifting the epithelial-mesenchymal balance
-
Miller-Hodges E., Hohenstein P. WT1 in disease: shifting the epithelial-mesenchymal balance. J. Pathol. 2011, 226:229-240.
-
(2011)
J. Pathol.
, vol.226
, pp. 229-240
-
-
Miller-Hodges, E.1
Hohenstein, P.2
-
6
-
-
49949109926
-
New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes
-
Morrison A.A., et al. New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am. J. Physiol. Renal Physiol. 2008, 295:F12-F17.
-
(2008)
Am. J. Physiol. Renal Physiol.
, vol.295
-
-
Morrison, A.A.1
-
7
-
-
24344478550
-
Transcriptional regulation by WT1 in development
-
Roberts S.G. Transcriptional regulation by WT1 in development. Curr. Opin. Genet. Dev. 2005, 15:542-547.
-
(2005)
Curr. Opin. Genet. Dev.
, vol.15
, pp. 542-547
-
-
Roberts, S.G.1
-
8
-
-
34247579714
-
A tumor suppressor and oncogene: the WT1 story
-
Yang L., et al. A tumor suppressor and oncogene: the WT1 story. Leukemia 2007, 21:868-876.
-
(2007)
Leukemia
, vol.21
, pp. 868-876
-
-
Yang, L.1
-
9
-
-
73949146501
-
Epithelial-mesenchymal transitions in development and disease: old views and new perspectives
-
Nieto M.A. Epithelial-mesenchymal transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol. 2009, 53:1541-1547.
-
(2009)
Int. J. Dev. Biol.
, vol.53
, pp. 1541-1547
-
-
Nieto, M.A.1
-
10
-
-
41549162752
-
Transitions between epithelial and mesenchymal states in development and disease
-
Baum B., et al. Transitions between epithelial and mesenchymal states in development and disease. Semin. Cell Dev. Biol. 2008, 19:294-308.
-
(2008)
Semin. Cell Dev. Biol.
, vol.19
, pp. 294-308
-
-
Baum, B.1
-
11
-
-
67650999875
-
The basics of epithelial-mesenchymal transition
-
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119:1420-1428.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1420-1428
-
-
Kalluri, R.1
Weinberg, R.A.2
-
12
-
-
0036830524
-
Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in metazoans
-
Perez-Pomares J.M., Munoz-Chapuli R. Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in metazoans. Anat. Rec. 2002, 268:343-351.
-
(2002)
Anat. Rec.
, vol.268
, pp. 343-351
-
-
Perez-Pomares, J.M.1
Munoz-Chapuli, R.2
-
13
-
-
43049165453
-
The epithelial-mesenchymal transition generates cells with properties of stem cells
-
Mani S.A., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
-
14
-
-
0028587166
-
The genetics of Wilms' tumor: a case of disrupted development
-
Hastie N.D. The genetics of Wilms' tumor: a case of disrupted development. Annu. Rev. Genet. 1994, 28:523-558.
-
(1994)
Annu. Rev. Genet.
, vol.28
, pp. 523-558
-
-
Hastie, N.D.1
-
15
-
-
34848913486
-
WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac, diaphragmatic malformations
-
Suri M., et al. WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac, diaphragmatic malformations. Am. J. Med. Genet. A 2007, 143A:2312-2320.
-
(2007)
Am. J. Med. Genet. A
, vol.143 A
, pp. 2312-2320
-
-
Suri, M.1
-
16
-
-
0027182741
-
WT-1 is required for early kidney development
-
Kreidberg J.A., et al. WT-1 is required for early kidney development. Cell 1993, 74:679-691.
-
(1993)
Cell
, vol.74
, pp. 679-691
-
-
Kreidberg, J.A.1
-
17
-
-
0033005665
-
YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis
-
Moore A.W., et al. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 1999, 126:1845-1857.
-
(1999)
Development
, vol.126
, pp. 1845-1857
-
-
Moore, A.W.1
-
18
-
-
0033615072
-
The Wilms tumor suppressor gene wt1 is required for development of the spleen
-
Herzer U., et al. The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr. Biol. 1999, 9:837-840.
-
(1999)
Curr. Biol.
, vol.9
, pp. 837-840
-
-
Herzer, U.1
-
19
-
-
73349108404
-
Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin
-
Martinez-Estrada O.M., et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 2010, 42:89-93.
-
(2010)
Nat. Genet.
, vol.42
, pp. 89-93
-
-
Martinez-Estrada, O.M.1
-
20
-
-
0035839099
-
Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation
-
Hammes A., et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001, 106:319-329.
-
(2001)
Cell
, vol.106
, pp. 319-329
-
-
Hammes, A.1
-
21
-
-
0035943454
-
Life, sex, and WT1 isoforms: three amino acids can make all the difference
-
Hastie N.D. Life, sex, and WT1 isoforms: three amino acids can make all the difference. Cell 2001, 106:391-394.
-
(2001)
Cell
, vol.106
, pp. 391-394
-
-
Hastie, N.D.1
-
22
-
-
36549037614
-
The post-transcriptional roles of WT1, a multifunctional zinc-finger protein
-
Morrison A.A., et al. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim. Biophys. Acta 2008, 1785:55-62.
-
(2008)
Biochim. Biophys. Acta
, vol.1785
, pp. 55-62
-
-
Morrison, A.A.1
-
23
-
-
0027054125
-
The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo
-
Armstrong J.F., et al. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 1993, 40:85-97.
-
(1993)
Mech. Dev.
, vol.40
, pp. 85-97
-
-
Armstrong, J.F.1
-
24
-
-
79955155333
-
Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development
-
Karner C.M., et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 2011, 138:1247-1257.
-
(2011)
Development
, vol.138
, pp. 1247-1257
-
-
Karner, C.M.1
-
25
-
-
0028588919
-
Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4
-
Stark K., et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994, 372:679-683.
-
(1994)
Nature
, vol.372
, pp. 679-683
-
-
Stark, K.1
-
26
-
-
0031766557
-
Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney
-
Kispert A., et al. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 1998, 125:4225-4234.
-
(1998)
Development
, vol.125
, pp. 4225-4234
-
-
Kispert, A.1
-
27
-
-
77952946956
-
Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development
-
Costantini F., Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 2010, 18:698-712.
-
(2010)
Dev. Cell
, vol.18
, pp. 698-712
-
-
Costantini, F.1
Kopan, R.2
-
28
-
-
84855264059
-
Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1
-
Chau Y.Y., et al. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet. 2011, 7:e1002404.
-
(2011)
PLoS Genet.
, vol.7
-
-
Chau, Y.Y.1
-
29
-
-
80052720433
-
A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression
-
Essafi A., et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev. Cell 2011, 21:559-574.
-
(2011)
Dev. Cell
, vol.21
, pp. 559-574
-
-
Essafi, A.1
-
30
-
-
0036087979
-
Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition
-
Li C.M., et al. Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am. J. Pathol. 2002, 160:2181-2190.
-
(2002)
Am. J. Pathol.
, vol.160
, pp. 2181-2190
-
-
Li, C.M.1
-
31
-
-
1642514813
-
Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation
-
Davies J.A., et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 2004, 13:235-246.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 235-246
-
-
Davies, J.A.1
-
32
-
-
84860384795
-
WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis
-
Murugan S., et al. WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Exp. Cell Res. 2012, 318:1134-1145.
-
(2012)
Exp. Cell Res.
, vol.318
, pp. 1134-1145
-
-
Murugan, S.1
-
33
-
-
77954919005
-
Epicardial spindle orientation controls cell entry into the myocardium
-
Wu M., et al. Epicardial spindle orientation controls cell entry into the myocardium. Dev. Cell 2010, 19:114-125.
-
(2010)
Dev. Cell
, vol.19
, pp. 114-125
-
-
Wu, M.1
-
34
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai C.L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454:104-108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
-
35
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B., et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454:109-113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
-
36
-
-
12244298152
-
Origin of coronary endothelial cells from epicardial mesothelium in avian embryos
-
Perez-Pomares J.M., et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 2002, 46:1005-1013.
-
(2002)
Int. J. Dev. Biol.
, vol.46
, pp. 1005-1013
-
-
Perez-Pomares, J.M.1
-
37
-
-
77950237662
-
Coronary arteries form by developmental reprogramming of venous cells
-
Red-Horse K., et al. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010, 464:549-553.
-
(2010)
Nature
, vol.464
, pp. 549-553
-
-
Red-Horse, K.1
-
38
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
-
Katz T.C., et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 2012, 22:639-650.
-
(2012)
Dev. Cell
, vol.22
, pp. 639-650
-
-
Katz, T.C.1
-
39
-
-
80052784041
-
Wt1 flip-flops chromatin in a CTCF domain
-
Gurudatta B.V., Corces V.G. Wt1 flip-flops chromatin in a CTCF domain. Dev. Cell 2011, 21:389-390.
-
(2011)
Dev. Cell
, vol.21
, pp. 389-390
-
-
Gurudatta, B.V.1
Corces, V.G.2
-
40
-
-
0030812823
-
The Wilms' tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro
-
Maurer U., et al. The Wilms' tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp. Hematol. 1997, 25:945-950.
-
(1997)
Exp. Hematol.
, vol.25
, pp. 945-950
-
-
Maurer, U.1
-
41
-
-
0035901533
-
The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells
-
Ellisen L.W., et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001, 20:1897-1909.
-
(2001)
EMBO J.
, vol.20
, pp. 1897-1909
-
-
Ellisen, L.W.1
-
42
-
-
0038188790
-
An isoform of the Wilms' tumor suppressor gene potentiates granulocytic differentiation
-
Loeb D.M., et al. An isoform of the Wilms' tumor suppressor gene potentiates granulocytic differentiation. Leukemia 2003, 17:965-971.
-
(2003)
Leukemia
, vol.17
, pp. 965-971
-
-
Loeb, D.M.1
-
43
-
-
0037087593
-
WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis
-
Guo J.K., et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 2002, 11:651-659.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 651-659
-
-
Guo, J.K.1
-
44
-
-
9644281578
-
The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1
-
Wagner N., et al. The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1. J. Am. Soc. Nephrol. 2004, 15:3044-3051.
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 3044-3051
-
-
Wagner, N.1
-
45
-
-
77949351029
-
New insights into epithelial-mesenchymal transition in kidney fibrosis
-
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 2010, 21:212-222.
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 212-222
-
-
Liu, Y.1
-
46
-
-
39549098861
-
Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria
-
Li Y., et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 2008, 172:299-308.
-
(2008)
Am. J. Pathol.
, vol.172
, pp. 299-308
-
-
Li, Y.1
-
47
-
-
34447634119
-
The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis
-
Hosen N., et al. The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 2007, 21:1783-1791.
-
(2007)
Leukemia
, vol.21
, pp. 1783-1791
-
-
Hosen, N.1
-
48
-
-
33744472466
-
Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene
-
Dame C., et al. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood 2006, 107:4282-4290.
-
(2006)
Blood
, vol.107
, pp. 4282-4290
-
-
Dame, C.1
-
49
-
-
1942457308
-
Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
-
Visnjic D., et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004, 103:3258-3264.
-
(2004)
Blood
, vol.103
, pp. 3258-3264
-
-
Visnjic, D.1
-
50
-
-
0242268524
-
Osteoblastic cells regulate the haematopoietic stem cell niche
-
Calvi L.M., et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003, 425:841-846.
-
(2003)
Nature
, vol.425
, pp. 841-846
-
-
Calvi, L.M.1
-
51
-
-
35348921682
-
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
-
Sacchetti B., et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131:324-336.
-
(2007)
Cell
, vol.131
, pp. 324-336
-
-
Sacchetti, B.1
-
52
-
-
84863116228
-
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma
-
Wei W., et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3143-3148.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3143-3148
-
-
Wei, W.1
-
53
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak P.A., et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148:556-567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
-
54
-
-
0036740049
-
Circulating levels of IGF-1 directly regulate bone growth and density
-
Yakar S., et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 2002, 110:771-781.
-
(2002)
J. Clin. Invest.
, vol.110
, pp. 771-781
-
-
Yakar, S.1
-
55
-
-
3242686718
-
Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes
-
Scavo L.M., et al. Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J. Clin. Endocrinol. Metab. 2004, 89:3543-3553.
-
(2004)
J. Clin. Endocrinol. Metab.
, vol.89
, pp. 3543-3553
-
-
Scavo, L.M.1
-
56
-
-
50949125470
-
Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth
-
Kloting N., et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 2008, 57:2074-2082.
-
(2008)
Diabetes
, vol.57
, pp. 2074-2082
-
-
Kloting, N.1
-
57
-
-
45949096604
-
The Wilms' tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo
-
Wagner N., et al. The Wilms' tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo. Oncogene 2008, 27:3662-3672.
-
(2008)
Oncogene
, vol.27
, pp. 3662-3672
-
-
Wagner, N.1
-
58
-
-
33748459960
-
Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms' tumor suppressor Wt1
-
Wagner N., et al. Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms' tumor suppressor Wt1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291:R779-R787.
-
(2006)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.291
-
-
Wagner, N.1
-
59
-
-
0031611708
-
Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour
-
Miyagawa K., et al. Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour. Nat. Genet. 1998, 18:15-17.
-
(1998)
Nat. Genet.
, vol.18
, pp. 15-17
-
-
Miyagawa, K.1
-
60
-
-
0030889197
-
Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology
-
Schumacher V., et al. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:3972-3977.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 3972-3977
-
-
Schumacher, V.1
-
61
-
-
0037501301
-
Two molecular subgroups of Wilms' tumors with or without WT1 mutations
-
Schumacher V., et al. Two molecular subgroups of Wilms' tumors with or without WT1 mutations. Clin. Cancer Res. 2003, 9:2005-2014.
-
(2003)
Clin. Cancer Res.
, vol.9
, pp. 2005-2014
-
-
Schumacher, V.1
-
62
-
-
36549089615
-
Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis
-
Ijpenberg A., et al. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev. Biol. 2007, 312:157-170.
-
(2007)
Dev. Biol.
, vol.312
, pp. 157-170
-
-
Ijpenberg, A.1
-
63
-
-
35948954244
-
Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver
-
Friedman S.L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008, 88:125-172.
-
(2008)
Physiol. Rev.
, vol.88
, pp. 125-172
-
-
Friedman, S.L.1
-
64
-
-
79955141545
-
Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2
-
Guadix J.A., et al. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 2011, 138:1093-1097.
-
(2011)
Development
, vol.138
, pp. 1093-1097
-
-
Guadix, J.A.1
-
65
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello E.R., et al. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
-
66
-
-
0036636107
-
The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction
-
Wagner K.D., et al. The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J. 2002, 16:1117-1119.
-
(2002)
FASEB J.
, vol.16
, pp. 1117-1119
-
-
Wagner, K.D.1
-
67
-
-
79959819263
-
De novo cardiomyocytes from within the activated adult heart after injury
-
Smart N., et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 2011, 474:640-644.
-
(2011)
Nature
, vol.474
, pp. 640-644
-
-
Smart, N.1
-
69
-
-
0033455394
-
Hepatic regeneration: revisiting the myth of Prometheus
-
Ankoma-Sey V. Hepatic regeneration: revisiting the myth of Prometheus. News Physiol. Sci. 1999, 14:149-155.
-
(1999)
News Physiol. Sci.
, vol.14
, pp. 149-155
-
-
Ankoma-Sey, V.1
-
70
-
-
0038446669
-
Role of the WT1 tumor suppressor in murine hematopoiesis
-
Alberta J.A., et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003, 101:2570-2574.
-
(2003)
Blood
, vol.101
, pp. 2570-2574
-
-
Alberta, J.A.1
|