메뉴 건너뛰기




Volumn 28, Issue 10, 2012, Pages 515-524

The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis

Author keywords

Homeostasis; Mesenchyme; MET EMT; Regeneration; Stem cell; Wt1

Indexed keywords

EPIDERMAL GROWTH FACTOR; GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR; ISOPROTEIN; TRANSCRIPTION FACTOR CTCF; TRANSCRIPTION FACTOR GATA 5; WNT4 PROTEIN; WNT9B PROTEIN; WT1 PROTEIN;

EID: 84866352284     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2012.04.004     Document Type: Review
Times cited : (55)

References (70)
  • 1
    • 67650996280 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease
    • Acloque H., et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 2009, 119:1438-1449.
    • (2009) J. Clin. Invest. , vol.119 , pp. 1438-1449
    • Acloque, H.1
  • 2
    • 77957551870 scopus 로고    scopus 로고
    • A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
    • Li R., et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7:51-63.
    • (2010) Cell Stem Cell , vol.7 , pp. 51-63
    • Li, R.1
  • 3
    • 34250784012 scopus 로고    scopus 로고
    • The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis
    • Ariyaratana S., Loeb D.M. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev. Mol. Med. 2007, 9:1-17.
    • (2007) Expert Rev. Mol. Med. , vol.9 , pp. 1-17
    • Ariyaratana, S.1    Loeb, D.M.2
  • 4
    • 79151472081 scopus 로고    scopus 로고
    • Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene
    • Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat. Rev. Cancer 2011, 11:111-121.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 111-121
    • Huff, V.1
  • 5
    • 82755163767 scopus 로고    scopus 로고
    • WT1 in disease: shifting the epithelial-mesenchymal balance
    • Miller-Hodges E., Hohenstein P. WT1 in disease: shifting the epithelial-mesenchymal balance. J. Pathol. 2011, 226:229-240.
    • (2011) J. Pathol. , vol.226 , pp. 229-240
    • Miller-Hodges, E.1    Hohenstein, P.2
  • 6
    • 49949109926 scopus 로고    scopus 로고
    • New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes
    • Morrison A.A., et al. New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am. J. Physiol. Renal Physiol. 2008, 295:F12-F17.
    • (2008) Am. J. Physiol. Renal Physiol. , vol.295
    • Morrison, A.A.1
  • 7
    • 24344478550 scopus 로고    scopus 로고
    • Transcriptional regulation by WT1 in development
    • Roberts S.G. Transcriptional regulation by WT1 in development. Curr. Opin. Genet. Dev. 2005, 15:542-547.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 542-547
    • Roberts, S.G.1
  • 8
    • 34247579714 scopus 로고    scopus 로고
    • A tumor suppressor and oncogene: the WT1 story
    • Yang L., et al. A tumor suppressor and oncogene: the WT1 story. Leukemia 2007, 21:868-876.
    • (2007) Leukemia , vol.21 , pp. 868-876
    • Yang, L.1
  • 9
    • 73949146501 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transitions in development and disease: old views and new perspectives
    • Nieto M.A. Epithelial-mesenchymal transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol. 2009, 53:1541-1547.
    • (2009) Int. J. Dev. Biol. , vol.53 , pp. 1541-1547
    • Nieto, M.A.1
  • 10
    • 41549162752 scopus 로고    scopus 로고
    • Transitions between epithelial and mesenchymal states in development and disease
    • Baum B., et al. Transitions between epithelial and mesenchymal states in development and disease. Semin. Cell Dev. Biol. 2008, 19:294-308.
    • (2008) Semin. Cell Dev. Biol. , vol.19 , pp. 294-308
    • Baum, B.1
  • 11
    • 67650999875 scopus 로고    scopus 로고
    • The basics of epithelial-mesenchymal transition
    • Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119:1420-1428.
    • (2009) J. Clin. Invest. , vol.119 , pp. 1420-1428
    • Kalluri, R.1    Weinberg, R.A.2
  • 12
    • 0036830524 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in metazoans
    • Perez-Pomares J.M., Munoz-Chapuli R. Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in metazoans. Anat. Rec. 2002, 268:343-351.
    • (2002) Anat. Rec. , vol.268 , pp. 343-351
    • Perez-Pomares, J.M.1    Munoz-Chapuli, R.2
  • 13
    • 43049165453 scopus 로고    scopus 로고
    • The epithelial-mesenchymal transition generates cells with properties of stem cells
    • Mani S.A., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
    • (2008) Cell , vol.133 , pp. 704-715
    • Mani, S.A.1
  • 14
    • 0028587166 scopus 로고
    • The genetics of Wilms' tumor: a case of disrupted development
    • Hastie N.D. The genetics of Wilms' tumor: a case of disrupted development. Annu. Rev. Genet. 1994, 28:523-558.
    • (1994) Annu. Rev. Genet. , vol.28 , pp. 523-558
    • Hastie, N.D.1
  • 15
    • 34848913486 scopus 로고    scopus 로고
    • WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac, diaphragmatic malformations
    • Suri M., et al. WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac, diaphragmatic malformations. Am. J. Med. Genet. A 2007, 143A:2312-2320.
    • (2007) Am. J. Med. Genet. A , vol.143 A , pp. 2312-2320
    • Suri, M.1
  • 16
    • 0027182741 scopus 로고
    • WT-1 is required for early kidney development
    • Kreidberg J.A., et al. WT-1 is required for early kidney development. Cell 1993, 74:679-691.
    • (1993) Cell , vol.74 , pp. 679-691
    • Kreidberg, J.A.1
  • 17
    • 0033005665 scopus 로고    scopus 로고
    • YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis
    • Moore A.W., et al. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 1999, 126:1845-1857.
    • (1999) Development , vol.126 , pp. 1845-1857
    • Moore, A.W.1
  • 18
    • 0033615072 scopus 로고    scopus 로고
    • The Wilms tumor suppressor gene wt1 is required for development of the spleen
    • Herzer U., et al. The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr. Biol. 1999, 9:837-840.
    • (1999) Curr. Biol. , vol.9 , pp. 837-840
    • Herzer, U.1
  • 19
    • 73349108404 scopus 로고    scopus 로고
    • Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin
    • Martinez-Estrada O.M., et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 2010, 42:89-93.
    • (2010) Nat. Genet. , vol.42 , pp. 89-93
    • Martinez-Estrada, O.M.1
  • 20
    • 0035839099 scopus 로고    scopus 로고
    • Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation
    • Hammes A., et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001, 106:319-329.
    • (2001) Cell , vol.106 , pp. 319-329
    • Hammes, A.1
  • 21
    • 0035943454 scopus 로고    scopus 로고
    • Life, sex, and WT1 isoforms: three amino acids can make all the difference
    • Hastie N.D. Life, sex, and WT1 isoforms: three amino acids can make all the difference. Cell 2001, 106:391-394.
    • (2001) Cell , vol.106 , pp. 391-394
    • Hastie, N.D.1
  • 22
    • 36549037614 scopus 로고    scopus 로고
    • The post-transcriptional roles of WT1, a multifunctional zinc-finger protein
    • Morrison A.A., et al. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim. Biophys. Acta 2008, 1785:55-62.
    • (2008) Biochim. Biophys. Acta , vol.1785 , pp. 55-62
    • Morrison, A.A.1
  • 23
    • 0027054125 scopus 로고
    • The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo
    • Armstrong J.F., et al. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 1993, 40:85-97.
    • (1993) Mech. Dev. , vol.40 , pp. 85-97
    • Armstrong, J.F.1
  • 24
    • 79955155333 scopus 로고    scopus 로고
    • Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development
    • Karner C.M., et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 2011, 138:1247-1257.
    • (2011) Development , vol.138 , pp. 1247-1257
    • Karner, C.M.1
  • 25
    • 0028588919 scopus 로고
    • Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4
    • Stark K., et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994, 372:679-683.
    • (1994) Nature , vol.372 , pp. 679-683
    • Stark, K.1
  • 26
    • 0031766557 scopus 로고    scopus 로고
    • Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney
    • Kispert A., et al. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 1998, 125:4225-4234.
    • (1998) Development , vol.125 , pp. 4225-4234
    • Kispert, A.1
  • 27
    • 77952946956 scopus 로고    scopus 로고
    • Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development
    • Costantini F., Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 2010, 18:698-712.
    • (2010) Dev. Cell , vol.18 , pp. 698-712
    • Costantini, F.1    Kopan, R.2
  • 28
    • 84855264059 scopus 로고    scopus 로고
    • Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1
    • Chau Y.Y., et al. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet. 2011, 7:e1002404.
    • (2011) PLoS Genet. , vol.7
    • Chau, Y.Y.1
  • 29
    • 80052720433 scopus 로고    scopus 로고
    • A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression
    • Essafi A., et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev. Cell 2011, 21:559-574.
    • (2011) Dev. Cell , vol.21 , pp. 559-574
    • Essafi, A.1
  • 30
    • 0036087979 scopus 로고    scopus 로고
    • Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition
    • Li C.M., et al. Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am. J. Pathol. 2002, 160:2181-2190.
    • (2002) Am. J. Pathol. , vol.160 , pp. 2181-2190
    • Li, C.M.1
  • 31
    • 1642514813 scopus 로고    scopus 로고
    • Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation
    • Davies J.A., et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 2004, 13:235-246.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 235-246
    • Davies, J.A.1
  • 32
    • 84860384795 scopus 로고    scopus 로고
    • WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis
    • Murugan S., et al. WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Exp. Cell Res. 2012, 318:1134-1145.
    • (2012) Exp. Cell Res. , vol.318 , pp. 1134-1145
    • Murugan, S.1
  • 33
    • 77954919005 scopus 로고    scopus 로고
    • Epicardial spindle orientation controls cell entry into the myocardium
    • Wu M., et al. Epicardial spindle orientation controls cell entry into the myocardium. Dev. Cell 2010, 19:114-125.
    • (2010) Dev. Cell , vol.19 , pp. 114-125
    • Wu, M.1
  • 34
    • 46449089721 scopus 로고    scopus 로고
    • A myocardial lineage derives from Tbx18 epicardial cells
    • Cai C.L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454:104-108.
    • (2008) Nature , vol.454 , pp. 104-108
    • Cai, C.L.1
  • 35
    • 46449138664 scopus 로고    scopus 로고
    • Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
    • Zhou B., et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454:109-113.
    • (2008) Nature , vol.454 , pp. 109-113
    • Zhou, B.1
  • 36
    • 12244298152 scopus 로고    scopus 로고
    • Origin of coronary endothelial cells from epicardial mesothelium in avian embryos
    • Perez-Pomares J.M., et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 2002, 46:1005-1013.
    • (2002) Int. J. Dev. Biol. , vol.46 , pp. 1005-1013
    • Perez-Pomares, J.M.1
  • 37
    • 77950237662 scopus 로고    scopus 로고
    • Coronary arteries form by developmental reprogramming of venous cells
    • Red-Horse K., et al. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010, 464:549-553.
    • (2010) Nature , vol.464 , pp. 549-553
    • Red-Horse, K.1
  • 38
    • 84863229669 scopus 로고    scopus 로고
    • Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
    • Katz T.C., et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 2012, 22:639-650.
    • (2012) Dev. Cell , vol.22 , pp. 639-650
    • Katz, T.C.1
  • 39
    • 80052784041 scopus 로고    scopus 로고
    • Wt1 flip-flops chromatin in a CTCF domain
    • Gurudatta B.V., Corces V.G. Wt1 flip-flops chromatin in a CTCF domain. Dev. Cell 2011, 21:389-390.
    • (2011) Dev. Cell , vol.21 , pp. 389-390
    • Gurudatta, B.V.1    Corces, V.G.2
  • 40
    • 0030812823 scopus 로고    scopus 로고
    • The Wilms' tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro
    • Maurer U., et al. The Wilms' tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp. Hematol. 1997, 25:945-950.
    • (1997) Exp. Hematol. , vol.25 , pp. 945-950
    • Maurer, U.1
  • 41
    • 0035901533 scopus 로고    scopus 로고
    • The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells
    • Ellisen L.W., et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001, 20:1897-1909.
    • (2001) EMBO J. , vol.20 , pp. 1897-1909
    • Ellisen, L.W.1
  • 42
    • 0038188790 scopus 로고    scopus 로고
    • An isoform of the Wilms' tumor suppressor gene potentiates granulocytic differentiation
    • Loeb D.M., et al. An isoform of the Wilms' tumor suppressor gene potentiates granulocytic differentiation. Leukemia 2003, 17:965-971.
    • (2003) Leukemia , vol.17 , pp. 965-971
    • Loeb, D.M.1
  • 43
    • 0037087593 scopus 로고    scopus 로고
    • WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis
    • Guo J.K., et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 2002, 11:651-659.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 651-659
    • Guo, J.K.1
  • 44
    • 9644281578 scopus 로고    scopus 로고
    • The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1
    • Wagner N., et al. The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1. J. Am. Soc. Nephrol. 2004, 15:3044-3051.
    • (2004) J. Am. Soc. Nephrol. , vol.15 , pp. 3044-3051
    • Wagner, N.1
  • 45
    • 77949351029 scopus 로고    scopus 로고
    • New insights into epithelial-mesenchymal transition in kidney fibrosis
    • Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 2010, 21:212-222.
    • (2010) J. Am. Soc. Nephrol. , vol.21 , pp. 212-222
    • Liu, Y.1
  • 46
    • 39549098861 scopus 로고    scopus 로고
    • Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria
    • Li Y., et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 2008, 172:299-308.
    • (2008) Am. J. Pathol. , vol.172 , pp. 299-308
    • Li, Y.1
  • 47
    • 34447634119 scopus 로고    scopus 로고
    • The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis
    • Hosen N., et al. The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 2007, 21:1783-1791.
    • (2007) Leukemia , vol.21 , pp. 1783-1791
    • Hosen, N.1
  • 48
    • 33744472466 scopus 로고    scopus 로고
    • Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene
    • Dame C., et al. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood 2006, 107:4282-4290.
    • (2006) Blood , vol.107 , pp. 4282-4290
    • Dame, C.1
  • 49
    • 1942457308 scopus 로고    scopus 로고
    • Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
    • Visnjic D., et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004, 103:3258-3264.
    • (2004) Blood , vol.103 , pp. 3258-3264
    • Visnjic, D.1
  • 50
    • 0242268524 scopus 로고    scopus 로고
    • Osteoblastic cells regulate the haematopoietic stem cell niche
    • Calvi L.M., et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003, 425:841-846.
    • (2003) Nature , vol.425 , pp. 841-846
    • Calvi, L.M.1
  • 51
    • 35348921682 scopus 로고    scopus 로고
    • Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
    • Sacchetti B., et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131:324-336.
    • (2007) Cell , vol.131 , pp. 324-336
    • Sacchetti, B.1
  • 52
    • 84863116228 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma
    • Wei W., et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3143-3148.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3143-3148
    • Wei, W.1
  • 53
    • 84863012459 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
    • Dutchak P.A., et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148:556-567.
    • (2012) Cell , vol.148 , pp. 556-567
    • Dutchak, P.A.1
  • 54
    • 0036740049 scopus 로고    scopus 로고
    • Circulating levels of IGF-1 directly regulate bone growth and density
    • Yakar S., et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 2002, 110:771-781.
    • (2002) J. Clin. Invest. , vol.110 , pp. 771-781
    • Yakar, S.1
  • 55
    • 3242686718 scopus 로고    scopus 로고
    • Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes
    • Scavo L.M., et al. Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J. Clin. Endocrinol. Metab. 2004, 89:3543-3553.
    • (2004) J. Clin. Endocrinol. Metab. , vol.89 , pp. 3543-3553
    • Scavo, L.M.1
  • 56
    • 50949125470 scopus 로고    scopus 로고
    • Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth
    • Kloting N., et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 2008, 57:2074-2082.
    • (2008) Diabetes , vol.57 , pp. 2074-2082
    • Kloting, N.1
  • 57
    • 45949096604 scopus 로고    scopus 로고
    • The Wilms' tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo
    • Wagner N., et al. The Wilms' tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo. Oncogene 2008, 27:3662-3672.
    • (2008) Oncogene , vol.27 , pp. 3662-3672
    • Wagner, N.1
  • 58
    • 33748459960 scopus 로고    scopus 로고
    • Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms' tumor suppressor Wt1
    • Wagner N., et al. Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms' tumor suppressor Wt1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291:R779-R787.
    • (2006) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.291
    • Wagner, N.1
  • 59
    • 0031611708 scopus 로고    scopus 로고
    • Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour
    • Miyagawa K., et al. Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour. Nat. Genet. 1998, 18:15-17.
    • (1998) Nat. Genet. , vol.18 , pp. 15-17
    • Miyagawa, K.1
  • 60
    • 0030889197 scopus 로고    scopus 로고
    • Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology
    • Schumacher V., et al. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:3972-3977.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 3972-3977
    • Schumacher, V.1
  • 61
    • 0037501301 scopus 로고    scopus 로고
    • Two molecular subgroups of Wilms' tumors with or without WT1 mutations
    • Schumacher V., et al. Two molecular subgroups of Wilms' tumors with or without WT1 mutations. Clin. Cancer Res. 2003, 9:2005-2014.
    • (2003) Clin. Cancer Res. , vol.9 , pp. 2005-2014
    • Schumacher, V.1
  • 62
    • 36549089615 scopus 로고    scopus 로고
    • Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis
    • Ijpenberg A., et al. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev. Biol. 2007, 312:157-170.
    • (2007) Dev. Biol. , vol.312 , pp. 157-170
    • Ijpenberg, A.1
  • 63
    • 35948954244 scopus 로고    scopus 로고
    • Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver
    • Friedman S.L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008, 88:125-172.
    • (2008) Physiol. Rev. , vol.88 , pp. 125-172
    • Friedman, S.L.1
  • 64
    • 79955141545 scopus 로고    scopus 로고
    • Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2
    • Guadix J.A., et al. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 2011, 138:1093-1097.
    • (2011) Development , vol.138 , pp. 1093-1097
    • Guadix, J.A.1
  • 65
    • 79952065525 scopus 로고    scopus 로고
    • Transient regenerative potential of the neonatal mouse heart
    • Porrello E.R., et al. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
    • (2011) Science , vol.331 , pp. 1078-1080
    • Porrello, E.R.1
  • 66
    • 0036636107 scopus 로고    scopus 로고
    • The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction
    • Wagner K.D., et al. The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J. 2002, 16:1117-1119.
    • (2002) FASEB J. , vol.16 , pp. 1117-1119
    • Wagner, K.D.1
  • 67
    • 79959819263 scopus 로고    scopus 로고
    • De novo cardiomyocytes from within the activated adult heart after injury
    • Smart N., et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 2011, 474:640-644.
    • (2011) Nature , vol.474 , pp. 640-644
    • Smart, N.1
  • 69
    • 0033455394 scopus 로고    scopus 로고
    • Hepatic regeneration: revisiting the myth of Prometheus
    • Ankoma-Sey V. Hepatic regeneration: revisiting the myth of Prometheus. News Physiol. Sci. 1999, 14:149-155.
    • (1999) News Physiol. Sci. , vol.14 , pp. 149-155
    • Ankoma-Sey, V.1
  • 70
    • 0038446669 scopus 로고    scopus 로고
    • Role of the WT1 tumor suppressor in murine hematopoiesis
    • Alberta J.A., et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003, 101:2570-2574.
    • (2003) Blood , vol.101 , pp. 2570-2574
    • Alberta, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.