메뉴 건너뛰기




Volumn 249, Issue 1, 2012, Pages 5-13

Metabolism and autophagy in the immune system: Immunometabolism comes of age

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE PHOSPHATE; ADENOSINE TRIPHOSPHATE; ADENYLATE KINASE; ADIPOCYTOKINE; AMINO ACID; CARNITINE PALMITOYLTRANSFERASE I; CYTOKINE; ESTROGEN RELATED RECEPTOR ALPHA; HYPOXIA INDUCIBLE FACTOR 1ALPHA; INDOLEAMINE 2,3 DIOXYGENASE; INSULIN; LEPTIN; LIPID; LIVER X RECEPTOR; MAMMALIAN TARGET OF RAPAMYCIN; METFORMIN; MYC PROTEIN; NUCLEOTIDE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOINOSITIDE DEPENDENT PROTEIN KINASE 1; PROTEIN KINASE B; TRANSCRIPTION FACTOR; TRYPTOPHAN;

EID: 84865300719     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/j.1600-065X.2012.01158.x     Document Type: Article
Times cited : (53)

References (89)
  • 1
    • 0030803977 scopus 로고    scopus 로고
    • Nutrition and the immune system: an introduction
    • Chandra RK. Nutrition and the immune system: an introduction. Am J Clin Nutri 1997;66:460S-463S.
    • (1997) Am J Clin Nutri , vol.66
    • Chandra, R.K.1
  • 2
    • 84865301480 scopus 로고
    • Effects of nutrition on growth and resistance to infection
    • Effects of nutrition on growth and resistance to infection. Am J Public Health 1926;16:1221-1222.
    • (1926) Am J Public Health , vol.16 , pp. 1221-1222
  • 4
    • 79955398591 scopus 로고    scopus 로고
    • Otto Warburg's contributions to current concepts of cancer metabolism
    • Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011;11:325-337.
    • (2011) Nat Rev Cancer , vol.11 , pp. 325-337
    • Koppenol, W.H.1    Bounds, P.L.2    Dang, C.V.3
  • 5
    • 0014071241 scopus 로고
    • The effect of phytohemagglutinin upon glucose catabolism in lymphocytes
    • MacHaffie RA, Wang CH. The effect of phytohemagglutinin upon glucose catabolism in lymphocytes. Blood 1967;29 (Suppl):640-646.
    • (1967) Blood , vol.29 , Issue.SUPPL , pp. 640-646
    • MacHaffie, R.A.1    Wang, C.H.2
  • 6
    • 0014190264 scopus 로고
    • The carbohydrate metabolism and respiration of isolated small lymphocytes. in vitro studies of normal and phytohemagglutinin stimulated cells
    • Pachman LM. The carbohydrate metabolism and respiration of isolated small lymphocytes. in vitro studies of normal and phytohemagglutinin stimulated cells. Blood 1967;30:691-706.
    • (1967) Blood , vol.30 , pp. 691-706
    • Pachman, L.M.1
  • 7
    • 0027474296 scopus 로고
    • Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes
    • Bental M, Deutsch C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med 1993;29:317-326.
    • (1993) Magn Reson Med , vol.29 , pp. 317-326
    • Bental, M.1    Deutsch, C.2
  • 8
    • 54249141095 scopus 로고    scopus 로고
    • Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival
    • Maciver NJ, et al. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 2008;84:949-957.
    • (2008) J Leukoc Biol , vol.84 , pp. 949-957
    • Maciver, N.J.1
  • 9
    • 84859140799 scopus 로고    scopus 로고
    • Metabolic pathways in T cell fate and function
    • Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol 2012;33:168-173.
    • (2012) Trends Immunol , vol.33 , pp. 168-173
    • Gerriets, V.A.1    Rathmell, J.C.2
  • 10
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • De Berardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008;7:11-20.
    • (2008) Cell Metab , vol.7 , pp. 11-20
    • De Berardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 11
    • 67650074206 scopus 로고    scopus 로고
    • mTOR regulates memory CD8 T-cell differentiation
    • Araki K, et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009;460:108-112.
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1
  • 12
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce EL, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009;460:103-107.
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1
  • 13
    • 84865285455 scopus 로고    scopus 로고
    • Metabolic switching and fuel choice during T cell differentiation and memory development
    • van der Windt GJW, Pearce EJ. Metabolic switching and fuel choice during T cell differentiation and memory development. Immunol Rev 2012;249:27-42.
    • (2012) Immunol Rev , vol.249 , pp. 27-42
    • van der Windt, G.J.W.1    Pearce, E.J.2
  • 14
    • 33745006592 scopus 로고    scopus 로고
    • The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells
    • Alves NL, et al. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006;24:703-716.
    • (2006) Immunity , vol.24 , pp. 703-716
    • Alves, N.L.1
  • 15
    • 79953157651 scopus 로고    scopus 로고
    • AKT requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells
    • Coloff JL, et al. AKT requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem 2011;286:5921-5933.
    • (2011) J Biol Chem , vol.286 , pp. 5921-5933
    • Coloff, J.L.1
  • 16
    • 77953909758 scopus 로고    scopus 로고
    • Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones
    • Wensveen FM, et al. Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones. Immunity 2010;32:754-765.
    • (2010) Immunity , vol.32 , pp. 754-765
    • Wensveen, F.M.1
  • 17
    • 84865287233 scopus 로고    scopus 로고
    • The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes
    • Wensveen FM, van Gisbergen KPJM, Eldering E. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes. Immunol Rev 2012;249:84-103.
    • (2012) Immunol Rev , vol.249 , pp. 84-103
    • Wensveen, F.M.1    van Gisbergen, K.P.J.M.2    Eldering, E.3
  • 18
    • 0033635249 scopus 로고    scopus 로고
    • In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability
    • Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 2000;6:683-692.
    • (2000) Mol Cell , vol.6 , pp. 683-692
    • Rathmell, J.C.1    Vander Heiden, M.G.2    Harris, M.H.3    Frauwirth, K.A.4    Thompson, C.B.5
  • 19
    • 77951639702 scopus 로고    scopus 로고
    • IL-7 is essential for homeostatic control of T cell metabolism in vivo
    • Jacobs SR, Michalek RD, Rathmell JC. IL-7 is essential for homeostatic control of T cell metabolism in vivo. J Immunol 2010;184:3461-3469.
    • (2010) J Immunol , vol.184 , pp. 3461-3469
    • Jacobs, S.R.1    Michalek, R.D.2    Rathmell, J.C.3
  • 20
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769-777.
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1
  • 21
    • 84865294745 scopus 로고    scopus 로고
    • Metabolic reprogramming and metabolic dependency in T cells
    • Wang R, Green DR. Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 2012;249:14-26.
    • (2012) Immunol Rev , vol.249 , pp. 14-26
    • Wang, R.1    Green, D.R.2
  • 22
    • 79251500689 scopus 로고    scopus 로고
    • Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease
    • Gatza E, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med 2011;3:67ra68.
    • (2011) Sci Transl Med , vol.3
    • Gatza, E.1
  • 23
    • 84865291302 scopus 로고    scopus 로고
    • Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation
    • Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari Jr AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2012;249:104-115.
    • (2012) Immunol Rev , vol.249 , pp. 104-115
    • Wahl, D.R.1    Byersdorfer, C.A.2    Ferrara, J.L.M.3    Opipari Jr, A.W.4    Glick, G.D.5
  • 24
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T cell differentiation and function
    • Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T cell differentiation and function. Immunol Rev 2012;249:43-58.
    • (2012) Immunol Rev , vol.249 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 25
    • 34247184208 scopus 로고    scopus 로고
    • Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking
    • Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 2007;18:1437-1446.
    • (2007) Mol Biol Cell , vol.18 , pp. 1437-1446
    • Wieman, H.L.1    Wofford, J.A.2    Rathmell, J.C.3
  • 26
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171-183.
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 28
    • 79951745387 scopus 로고    scopus 로고
    • Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism
    • Macintyre AN, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 2011;34:224-236.
    • (2011) Immunity , vol.34 , pp. 224-236
    • Macintyre, A.N.1
  • 29
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009;9:563-575.
    • (2009) Nat Rev Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 30
    • 73849112608 scopus 로고    scopus 로고
    • The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression
    • Cao Y, et al. The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res 2010;20:99-108.
    • (2010) Cell Res , vol.20 , pp. 99-108
    • Cao, Y.1
  • 31
    • 80054726323 scopus 로고    scopus 로고
    • The liver kinase B1 is a central regulator of T cell development, activation, and metabolism
    • MacIver NJ, et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 2011;187:4187-4198.
    • (2011) J Immunol , vol.187 , pp. 4187-4198
    • MacIver, N.J.1
  • 32
    • 74249122511 scopus 로고    scopus 로고
    • LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells
    • Tamas P, et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 2010;40:242-253.
    • (2010) Eur J Immunol , vol.40 , pp. 242-253
    • Tamas, P.1
  • 33
    • 84865289879 scopus 로고    scopus 로고
    • LKB1 and AMPK: central regulators of lymphocyte metabolism and function
    • Blagih J, Krawczyk CM, Jones RG. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol Rev 2012;249:59-71.
    • (2012) Immunol Rev , vol.249 , pp. 59-71
    • Blagih, J.1    Krawczyk, C.M.2    Jones, R.G.3
  • 34
    • 70350728803 scopus 로고    scopus 로고
    • MYC-induced cancer cell energy metabolism and therapeutic opportunities
    • Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009;15:6479-6483.
    • (2009) Clin Cancer Res , vol.15 , pp. 6479-6483
    • Dang, C.V.1    Le, A.2    Gao, P.3
  • 35
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang RN, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011;35:871-882.
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.N.1
  • 36
    • 84865305956 scopus 로고    scopus 로고
    • Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity
    • Kidani Y, Bensinger SJ. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol Rev 2012;249:72-83.
    • (2012) Immunol Rev , vol.249 , pp. 72-83
    • Kidani, Y.1    Bensinger, S.J.2
  • 37
    • 46149098344 scopus 로고    scopus 로고
    • LXR signaling couples sterol metabolism to proliferation in the acquired immune response
    • Bensinger SJ, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008;134:97-111.
    • (2008) Cell , vol.134 , pp. 97-111
    • Bensinger, S.J.1
  • 38
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • Van der Windt GJ, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012;36:68-78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • Van der Windt, G.J.1
  • 39
    • 52249090234 scopus 로고    scopus 로고
    • ERRalpha: a metabolic function for the oldest orphan
    • Villena JA, Kralli A. ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol Metab 2008;19:269-276.
    • (2008) Trends Endocrinol Metab , vol.19 , pp. 269-276
    • Villena, J.A.1    Kralli, A.2
  • 40
    • 81055126129 scopus 로고    scopus 로고
    • Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation
    • Michalek RD, et al. Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci USA 2011;108:18348-18353.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 18348-18353
    • Michalek, R.D.1
  • 41
    • 34547643550 scopus 로고    scopus 로고
    • Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense
    • Sonoda J, et al. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev 2007;21:1909-1920.
    • (2007) Genes Dev , vol.21 , pp. 1909-1920
    • Sonoda, J.1
  • 42
    • 80054716866 scopus 로고    scopus 로고
    • The metabolic regulator ERRalpha, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer
    • Chang CY, et al. The metabolic regulator ERRalpha, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 2011;20:500-510.
    • (2011) Cancer Cell , vol.20 , pp. 500-510
    • Chang, C.Y.1
  • 43
    • 79551539873 scopus 로고    scopus 로고
    • The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth
    • Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab 2011;13:139-148.
    • (2011) Cell Metab , vol.13 , pp. 139-148
    • Tennessen, J.M.1    Baker, K.D.2    Lam, G.3    Evans, J.4    Thummel, C.S.5
  • 44
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009;30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 45
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011;12:295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 46
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010;32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 47
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011;186:3299-3303.
    • (2011) J Immunol , vol.186 , pp. 3299-3303
    • Michalek, R.D.1
  • 48
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011;208:1367-1376.
    • (2011) J Exp Med , vol.208 , pp. 1367-1376
    • Shi, L.Z.1
  • 49
    • 84861845402 scopus 로고    scopus 로고
    • The updated biology of hypoxia-inducible factor
    • Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012;31:2448-2460.
    • (2012) EMBO J , vol.31 , pp. 2448-2460
    • Greer, S.N.1    Metcalf, J.L.2    Wang, Y.3    Ohh, M.4
  • 50
    • 54549089738 scopus 로고    scopus 로고
    • Hypoxia signalling through mTOR and the unfolded protein response in cancer
    • Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 2008;8:851-864.
    • (2008) Nat Rev Cancer , vol.8 , pp. 851-864
    • Wouters, B.G.1    Koritzinsky, M.2
  • 51
    • 80052277906 scopus 로고    scopus 로고
    • Control of T(H)17/T(reg) Balance by Hypoxia-Inducible Factor 1
    • Dang EV, et al. Control of T(H)17/T(reg) Balance by Hypoxia-Inducible Factor 1. Cell 2011;146:772-784.
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1
  • 52
    • 84865296997 scopus 로고    scopus 로고
    • Amino acid catabolism: a pivotal regulator of innate and adaptive immunity
    • McGaha TL, et al. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev 2012;249:135-157.
    • (2012) Immunol Rev , vol.249 , pp. 135-157
    • McGaha, T.L.1
  • 53
    • 77951718214 scopus 로고    scopus 로고
    • Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity
    • Liu X, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010;115:3520-3530.
    • (2010) Blood , vol.115 , pp. 3520-3530
    • Liu, X.1
  • 54
    • 78650124721 scopus 로고    scopus 로고
    • Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice
    • Sharma MD, et al. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity 2010;33:942-954.
    • (2010) Immunity , vol.33 , pp. 942-954
    • Sharma, M.D.1
  • 56
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. Autophagy and metabolism. Science 2010;330:1344-1348.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 57
    • 84865279637 scopus 로고    scopus 로고
    • The contribution of autophagy to lymphocyte survival and homeostasis
    • McLeod IX, Jia W, He Y-W. The contribution of autophagy to lymphocyte survival and homeostasis. Immunol Rev 2012;249:195-204.
    • (2012) Immunol Rev , vol.249 , pp. 195-204
    • McLeod, I.X.1    Jia, W.2    He, Y.-W.3
  • 58
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • Lum JJ, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120:237-248.
    • (2005) Cell , vol.120 , pp. 237-248
    • Lum, J.J.1
  • 59
    • 79955469013 scopus 로고    scopus 로고
    • Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis
    • Altman BJ, et al. Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene 2011;30:1855-1867.
    • (2011) Oncogene , vol.30 , pp. 1855-1867
    • Altman, B.J.1
  • 60
    • 84856800302 scopus 로고    scopus 로고
    • Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks
    • Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012;32:2-11.
    • (2012) Mol Cell Biol , vol.32 , pp. 2-11
    • Alers, S.1    Loffler, A.S.2    Wesselborg, S.3    Stork, B.4
  • 61
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011;331:456-461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 63
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez MG, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004;119:753-766.
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1
  • 64
    • 84865299726 scopus 로고    scopus 로고
    • PAMPs and DAMPs: signal 0s that spur autophagy and immunity
    • Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012;249:158-175.
    • (2012) Immunol Rev , vol.249 , pp. 158-175
    • Tang, D.1    Kang, R.2    Coyne, C.B.3    Zeh, H.J.4    Lotze, M.T.5
  • 65
    • 41449106674 scopus 로고    scopus 로고
    • The autophagy gene ATG5 plays an essential role in B lymphocyte development
    • Miller BC, et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008;4:309-314.
    • (2008) Autophagy , vol.4 , pp. 309-314
    • Miller, B.C.1
  • 66
    • 64249123646 scopus 로고    scopus 로고
    • Autophagy is essential for mitochondrial clearance in mature T lymphocytes
    • Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 2009;182:4046-4055.
    • (2009) J Immunol , vol.182 , pp. 4046-4055
    • Pua, H.H.1    Guo, J.2    Komatsu, M.3    He, Y.W.4
  • 67
    • 79952703288 scopus 로고    scopus 로고
    • Cell metabolism: an essential link between cell growth and apoptosis
    • Mason EF, Rathmell JC. Cell metabolism: an essential link between cell growth and apoptosis. Biochim Biophys Acta 2011;1813:645-654.
    • (2011) Biochim Biophys Acta , vol.1813 , pp. 645-654
    • Mason, E.F.1    Rathmell, J.C.2
  • 68
    • 84865296205 scopus 로고    scopus 로고
    • Programmed necrosis and autophagy in immune function
    • Lu JV, Walsh CM. Programmed necrosis and autophagy in immune function. Immunol Rev 2012;249:205-217.
    • (2012) Immunol Rev , vol.249 , pp. 205-217
    • Lu, J.V.1    Walsh, C.M.2
  • 69
    • 33746377553 scopus 로고    scopus 로고
    • Obesity-related derangements in metabolic regulation
    • Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem 2006;75:367-401.
    • (2006) Annu Rev Biochem , vol.75 , pp. 367-401
    • Muoio, D.M.1    Newgard, C.B.2
  • 70
    • 0030699420 scopus 로고    scopus 로고
    • Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice
    • Demas GE, Chefer V, Talan MI, Nelson RJ. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol 1997;273:R1631-R1637.
    • (1997) Am J Physiol , vol.273
    • Demas, G.E.1    Chefer, V.2    Talan, M.I.3    Nelson, R.J.4
  • 71
    • 84155163931 scopus 로고    scopus 로고
    • Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity
    • Conde J, et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors 2011;37:413-420.
    • (2011) BioFactors , vol.37 , pp. 413-420
    • Conde, J.1
  • 72
    • 84865294186 scopus 로고    scopus 로고
    • The outliers become a stampede as immunometabolism reaches a tipping point
    • Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV. The outliers become a stampede as immunometabolism reaches a tipping point. Immunol Rev 2012;249:253-275.
    • (2012) Immunol Rev , vol.249 , pp. 253-275
    • Nikolajczyk, B.S.1    Jagannathan-Bogdan, M.2    Denis, G.V.3
  • 73
    • 68349148211 scopus 로고    scopus 로고
    • Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
    • Feuerer M, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009;15:930-939.
    • (2009) Nat Med , vol.15 , pp. 930-939
    • Feuerer, M.1
  • 74
    • 77957108166 scopus 로고    scopus 로고
    • T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice
    • Strissel KJ, et al. T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity 2010;18:1918-1925.
    • (2010) Obesity , vol.18 , pp. 1918-1925
    • Strissel, K.J.1
  • 75
    • 68349150756 scopus 로고    scopus 로고
    • CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity
    • Nishimura S, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009;15:914-920.
    • (2009) Nat Med , vol.15 , pp. 914-920
    • Nishimura, S.1
  • 76
    • 68349137821 scopus 로고    scopus 로고
    • Normalization of obesity-associated insulin resistance through immunotherapy
    • Winer S, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 2009;15:921-929.
    • (2009) Nat Med , vol.15 , pp. 921-929
    • Winer, S.1
  • 77
    • 0032572722 scopus 로고    scopus 로고
    • Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression
    • Lord GM, et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998;394:897-901.
    • (1998) Nature , vol.394 , pp. 897-901
    • Lord, G.M.1
  • 78
    • 0028793697 scopus 로고
    • Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action
    • Frederich RC, et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1995;1:1311-1314.
    • (1995) Nat Med , vol.1 , pp. 1311-1314
    • Frederich, R.C.1
  • 79
    • 0037148928 scopus 로고    scopus 로고
    • Leptin-replacement therapy for lipodystrophy
    • Oral EA, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002;346:570-578.
    • (2002) N Engl J Med , vol.346 , pp. 570-578
    • Oral, E.A.1
  • 80
    • 84865300871 scopus 로고    scopus 로고
    • At the crossroad of T cells, adipose tissue, and diabetes
    • Matarese G, Procaccini C, De Rosa V. At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev 2012;249:116-134.
    • (2012) Immunol Rev , vol.249 , pp. 116-134
    • Matarese, G.1    Procaccini, C.2    De Rosa, V.3
  • 81
    • 78650188983 scopus 로고    scopus 로고
    • An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
    • Procaccini C, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010;33:929-941.
    • (2010) Immunity , vol.33 , pp. 929-941
    • Procaccini, C.1
  • 82
    • 33750584214 scopus 로고    scopus 로고
    • TLR4 links innate immunity and fatty acid-induced insulin resistance
    • Shi H, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006;116:3015-3025.
    • (2006) J Clin Invest , vol.116 , pp. 3015-3025
    • Shi, H.1
  • 83
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen H, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011;12:408-415.
    • (2011) Nat Immunol , vol.12 , pp. 408-415
    • Wen, H.1
  • 84
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
    • Vats D, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006;4:13-24.
    • (2006) Cell Metab , vol.4 , pp. 13-24
    • Vats, D.1
  • 85
    • 84865297442 scopus 로고    scopus 로고
    • The inflammation highway: metabolism accelerates inflammatory traffic in obesity
    • Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2012;249:218-238.
    • (2012) Immunol Rev , vol.249 , pp. 218-238
    • Johnson, A.R.1    Milner, J.J.2    Makowski, L.3
  • 86
    • 84858630049 scopus 로고    scopus 로고
    • A role for the NLRP3 inflammasome in metabolic diseases-did Warburg miss inflammation?
    • Wen H, Ting JP, O'Neill LA. A role for the NLRP3 inflammasome in metabolic diseases-did Warburg miss inflammation? Nat Immunol 2012;13:352-357.
    • (2012) Nat Immunol , vol.13 , pp. 352-357
    • Wen, H.1    Ting, J.P.2    O'Neill, L.A.3
  • 87
    • 84865289995 scopus 로고    scopus 로고
    • Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family
    • Tack CJ, Stienstra R, Joosten LAB, Netea MG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 2012;249:239-252.
    • (2012) Immunol Rev , vol.249 , pp. 239-252
    • Tack, C.J.1    Stienstra, R.2    Joosten, L.A.B.3    Netea, M.G.4
  • 88
    • 55249114228 scopus 로고    scopus 로고
    • Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells
    • Cham CM, Driessens G, O'Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008;38:2438-2450.
    • (2008) Eur J Immunol , vol.38 , pp. 2438-2450
    • Cham, C.M.1    Driessens, G.2    O'Keefe, J.P.3    Gajewski, T.F.4
  • 89
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
    • Jacobs SR, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 2008;180:4476-4486.
    • (2008) J Immunol , vol.180 , pp. 4476-4486
    • Jacobs, S.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.