메뉴 건너뛰기




Volumn 23, Issue 6, 2012, Pages 626-630

PAS kinase: Integrating nutrient sensing with nutrient partitioning

Author keywords

AMPK; Growth; Nutrient; PAS kinase; TOR

Indexed keywords

ADENYLATE KINASE; PAS KINASE; PROTEIN KINASE; TARGET OF RAPAMYCIN KINASE; UNCLASSIFIED DRUG;

EID: 84865164084     PISSN: 10849521     EISSN: 10963634     Source Type: Journal    
DOI: 10.1016/j.semcdb.2011.12.007     Document Type: Review
Times cited : (12)

References (55)
  • 1
    • 79951807242 scopus 로고    scopus 로고
    • AMPK and autophagy get connected
    • Hardie D.G. AMPK and autophagy get connected. EMBO J 2011, 30:634-635.
    • (2011) EMBO J , vol.30 , pp. 634-635
    • Hardie, D.G.1
  • 2
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: from growth signal integration to cancer, diabetes and ageing
    • Zoncu R., Efeyan A., Sabatini D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011, 12:21-35.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 3
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
    • Hardie D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007, 8:774-785.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 774-785
    • Hardie, D.G.1
  • 4
    • 63849149937 scopus 로고    scopus 로고
    • LKB1 and AMP-activated protein kinase control of mTOR signalling and growth
    • Shaw R.J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 2009, 196:65-80.
    • (2009) Acta Physiol (Oxf) , vol.196 , pp. 65-80
    • Shaw, R.J.1
  • 5
    • 0032619525 scopus 로고    scopus 로고
    • Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress
    • Hardie D.G. Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress. Biochem Soc Symp 1999, 64:13-27.
    • (1999) Biochem Soc Symp , vol.64 , pp. 13-27
    • Hardie, D.G.1
  • 6
    • 20844451123 scopus 로고    scopus 로고
    • AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
    • Kahn B.B., Alquier T., Carling D., Hardie D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005, 1:15-25.
    • (2005) Cell Metab , vol.1 , pp. 15-25
    • Kahn, B.B.1    Alquier, T.2    Carling, D.3    Hardie, D.G.4
  • 7
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6
  • 10
    • 34248546272 scopus 로고    scopus 로고
    • Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation
    • Smith T.L., Rutter J. Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol Cell 2007, 26:491-499.
    • (2007) Mol Cell , vol.26 , pp. 491-499
    • Smith, T.L.1    Rutter, J.2
  • 11
    • 70349777587 scopus 로고    scopus 로고
    • Structure and signaling mechanism of Per-ARNT-Sim domains
    • Moglich A., Ayers R.A., Moffat K. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 2009, 17:1282-1294.
    • (2009) Structure , vol.17 , pp. 1282-1294
    • Moglich, A.1    Ayers, R.A.2    Moffat, K.3
  • 12
    • 44949200347 scopus 로고    scopus 로고
    • Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
    • Kitanishi K., Igarashi J., Hayasaka K., Hikage N., Saiful I., Yamauchi S., et al. Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 2008, 47:6157-6168.
    • (2008) Biochemistry , vol.47 , pp. 6157-6168
    • Kitanishi, K.1    Igarashi, J.2    Hayasaka, K.3    Hikage, N.4    Saiful, I.5    Yamauchi, S.6
  • 13
    • 0035910008 scopus 로고    scopus 로고
    • PAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis
    • Stephenson K., Hoch J.A. PAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis. Proc Natl Acad Sci USA 2001, 98:15251-15256.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15251-15256
    • Stephenson, K.1    Hoch, J.A.2
  • 14
    • 57749090311 scopus 로고    scopus 로고
    • Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor
    • Soshilov A., Denison M.S. Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor. J Biol Chem 2008, 283:32995-33005.
    • (2008) J Biol Chem , vol.283 , pp. 32995-33005
    • Soshilov, A.1    Denison, M.S.2
  • 15
    • 0028964123 scopus 로고
    • The oxygen sensor protein, FixL, of Rhizobium meliloti. Role of histidine residues in heme binding, phosphorylation, and signal transduction
    • Monson E.K., Ditta G.S., Helinski D.R. The oxygen sensor protein, FixL, of Rhizobium meliloti. Role of histidine residues in heme binding, phosphorylation, and signal transduction. J Biol Chem 1995, 270:5243-5250.
    • (1995) J Biol Chem , vol.270 , pp. 5243-5250
    • Monson, E.K.1    Ditta, G.S.2    Helinski, D.R.3
  • 16
    • 0036774056 scopus 로고    scopus 로고
    • Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation
    • Amezcua C.A., Harper S.M., Rutter J., Gardner K.H. Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation. Structure 2002, 10:1349-1361.
    • (2002) Structure , vol.10 , pp. 1349-1361
    • Amezcua, C.A.1    Harper, S.M.2    Rutter, J.3    Gardner, K.H.4
  • 17
    • 36549018583 scopus 로고    scopus 로고
    • Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling
    • Grose J.H., Smith T.L., Sabic H., Rutter J. Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. EMBO J 2007, 26:4824-4830.
    • (2007) EMBO J , vol.26 , pp. 4824-4830
    • Grose, J.H.1    Smith, T.L.2    Sabic, H.3    Rutter, J.4
  • 18
    • 0037020125 scopus 로고    scopus 로고
    • Coordinate regulation of sugar flux and translation by PAS kinase
    • Rutter J., Probst B.L., McKnight S.L. Coordinate regulation of sugar flux and translation by PAS kinase. Cell 2002, 111:17-28.
    • (2002) Cell , vol.111 , pp. 17-28
    • Rutter, J.1    Probst, B.L.2    McKnight, S.L.3
  • 19
    • 78650340922 scopus 로고    scopus 로고
    • Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation
    • Kikani C.K., Antonysamy S.A., Bonanno J.B., Romero R., Zhang F.F., Russell M., et al. Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation. J Biol Chem 2010, 285:41034-41043.
    • (2010) J Biol Chem , vol.285 , pp. 41034-41043
    • Kikani, C.K.1    Antonysamy, S.A.2    Bonanno, J.B.3    Romero, R.4    Zhang, F.F.5    Russell, M.6
  • 20
    • 0029993727 scopus 로고    scopus 로고
    • Active and inactive protein kinases: structural basis for regulation
    • Johnson L.N., Noble M.E., Owen D.J. Active and inactive protein kinases: structural basis for regulation. Cell 1996, 85:149-158.
    • (1996) Cell , vol.85 , pp. 149-158
    • Johnson, L.N.1    Noble, M.E.2    Owen, D.J.3
  • 22
    • 0028827163 scopus 로고
    • Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae
    • Daran J.M., Dallies N., Thines-Sempoux D., Paquet V., Francois J. Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem 1995, 233:520-530.
    • (1995) Eur J Biochem , vol.233 , pp. 520-530
    • Daran, J.M.1    Dallies, N.2    Thines-Sempoux, D.3    Paquet, V.4    Francois, J.5
  • 23
    • 0021189223 scopus 로고
    • Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components
    • Szekely E., Montgomery D.L. Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components. Mol Cell Biol 1984, 4:939-946.
    • (1984) Mol Cell Biol , vol.4 , pp. 939-946
    • Szekely, E.1    Montgomery, D.L.2
  • 24
    • 0032964932 scopus 로고    scopus 로고
    • Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae
    • Parrou J.L., Enjalbert B., Plourde L., Bauche A., Gonzalez B., Francois J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 1999, 15:191-203.
    • (1999) Yeast , vol.15 , pp. 191-203
    • Parrou, J.L.1    Enjalbert, B.2    Plourde, L.3    Bauche, A.4    Gonzalez, B.5    Francois, J.6
  • 25
    • 0023410934 scopus 로고
    • Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes
    • Schuller H.J., Entian K.D. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol Gen Genet 1987, 209:366-373.
    • (1987) Mol Gen Genet , vol.209 , pp. 366-373
    • Schuller, H.J.1    Entian, K.D.2
  • 26
    • 0025021673 scopus 로고
    • Release of two Saccharomyces cerevisiae cytochrome genes, COX6 and CYC1, from glucose repression requires the SNF1 and SSN6 gene products
    • Wright R.M., Poyton R.O. Release of two Saccharomyces cerevisiae cytochrome genes, COX6 and CYC1, from glucose repression requires the SNF1 and SSN6 gene products. Mol Cell Biol 1990, 10:1297-1300.
    • (1990) Mol Cell Biol , vol.10 , pp. 1297-1300
    • Wright, R.M.1    Poyton, R.O.2
  • 27
    • 0030293885 scopus 로고    scopus 로고
    • Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
    • Wilson W.A., Hawley S.A., Hardie D.G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 1996, 6:1426-1434.
    • (1996) Curr Biol , vol.6 , pp. 1426-1434
    • Wilson, W.A.1    Hawley, S.A.2    Hardie, D.G.3
  • 28
    • 84455161597 scopus 로고    scopus 로고
    • Subunit and domain requirements for adenylate-mediated protection of Snf1 activation loop from dephosphorylation
    • Chandrashekarappa D.G., McCartney R.R., Schmidt M.C. Subunit and domain requirements for adenylate-mediated protection of Snf1 activation loop from dephosphorylation. J Biol Chem 2011.
    • (2011) J Biol Chem
    • Chandrashekarappa, D.G.1    McCartney, R.R.2    Schmidt, M.C.3
  • 29
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith R., Jacinto E., Wullschleger S., Lorberg A., Crespo J.L., Bonenfant D., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002, 10:457-468.
    • (2002) Mol Cell , vol.10 , pp. 457-468
    • Loewith, R.1    Jacinto, E.2    Wullschleger, S.3    Lorberg, A.4    Crespo, J.L.5    Bonenfant, D.6
  • 30
    • 0028137771 scopus 로고
    • TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast
    • Helliwell S.B., Wagner P., Kunz J., Deuter-Reinhard M., Henriquez R., Hall M.N. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 1994, 5:105-118.
    • (1994) Mol Biol Cell , vol.5 , pp. 105-118
    • Helliwell, S.B.1    Wagner, P.2    Kunz, J.3    Deuter-Reinhard, M.4    Henriquez, R.5    Hall, M.N.6
  • 31
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T., Hall M.N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 1999, 402:689-692.
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 33
    • 0030066934 scopus 로고    scopus 로고
    • Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation
    • Beretta L., Gingras A.C., Svitkin Y.V., Hall M.N., Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996, 15:658-664.
    • (1996) EMBO J , vol.15 , pp. 658-664
    • Beretta, L.1    Gingras, A.C.2    Svitkin, Y.V.3    Hall, M.N.4    Sonenberg, N.5
  • 34
    • 11144273952 scopus 로고    scopus 로고
    • TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1
    • Martin D.E., Soulard A., Hall M.N. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 2004, 119:969-979.
    • (2004) Cell , vol.119 , pp. 969-979
    • Martin, D.E.1    Soulard, A.2    Hall, M.N.3
  • 35
    • 0036899644 scopus 로고    scopus 로고
    • Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae
    • table of contents
    • Crespo J.L., Hall M.N. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2002, 66:579-591. table of contents.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 579-591
    • Crespo, J.L.1    Hall, M.N.2
  • 36
    • 0031041015 scopus 로고    scopus 로고
    • A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E
    • Altmann M., Schmitz N., Berset C., Trachsel H. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J 1997, 16:1114-1121.
    • (1997) EMBO J , vol.16 , pp. 1114-1121
    • Altmann, M.1    Schmitz, N.2    Berset, C.3    Trachsel, H.4
  • 37
    • 0029090110 scopus 로고
    • Characterization of yeast translation initiation factor 1A and cloning of its essential gene
    • Wei C.L., Kainuma M., Hershey J.W. Characterization of yeast translation initiation factor 1A and cloning of its essential gene. J Biol Chem 1995, 270:22788-22794.
    • (1995) J Biol Chem , vol.270 , pp. 22788-22794
    • Wei, C.L.1    Kainuma, M.2    Hershey, J.W.3
  • 38
    • 0030479340 scopus 로고    scopus 로고
    • TOR2 is required for organization of the actin cytoskeleton in yeast
    • Schmidt A., Kunz J., Hall M.N. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 1996, 93:13780-13785.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 13780-13785
    • Schmidt, A.1    Kunz, J.2    Hall, M.N.3
  • 39
    • 0027311858 scopus 로고
    • Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression
    • Kunz J., Henriquez R., Schneider U., Deuter-Reinhard M., Movva N.R., Hall M.N. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993, 73:585-596.
    • (1993) Cell , vol.73 , pp. 585-596
    • Kunz, J.1    Henriquez, R.2    Schneider, U.3    Deuter-Reinhard, M.4    Movva, N.R.5    Hall, M.N.6
  • 40
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E., Loewith R., Schmidt A., Lin S., Ruegg M.A., Hall A., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004, 6:1122-1128.
    • (2004) Nat Cell Biol , vol.6 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3    Lin, S.4    Ruegg, M.A.5    Hall, A.6
  • 41
    • 0030906569 scopus 로고    scopus 로고
    • The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2
    • Schmidt A., Bickle M., Beck T., Hall M.N. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 1997, 88:531-542.
    • (1997) Cell , vol.88 , pp. 531-542
    • Schmidt, A.1    Bickle, M.2    Beck, T.3    Hall, M.N.4
  • 42
    • 85029439007 scopus 로고    scopus 로고
    • PAS kinase promotes cell survival and growth via activation of Rho1
    • in press.
    • Cardon CM, Beck T, Hall MN, Rutter J. PAS kinase promotes cell survival and growth via activation of Rho1. Sci Signal, in press.
    • Sci Signal
    • Cardon, C.M.1    Beck, T.2    Hall, M.N.3    Rutter, J.4
  • 43
    • 0032488042 scopus 로고    scopus 로고
    • The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton
    • Helliwell S.B., Schmidt A., Ohya Y., Hall M.N. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 1998, 8:1211-1214.
    • (1998) Curr Biol , vol.8 , pp. 1211-1214
    • Helliwell, S.B.1    Schmidt, A.2    Ohya, Y.3    Hall, M.N.4
  • 44
    • 0029892037 scopus 로고    scopus 로고
    • Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase
    • Qadota H., Python C.P., Inoue S.B., Arisawa M., Anraku Y., Zheng Y., et al. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 1996, 272:279-281.
    • (1996) Science , vol.272 , pp. 279-281
    • Qadota, H.1    Python, C.P.2    Inoue, S.B.3    Arisawa, M.4    Anraku, Y.5    Zheng, Y.6
  • 45
    • 72449136766 scopus 로고    scopus 로고
    • Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control
    • Jansen J.M., Wanless A.G., Seidel C.W., Weiss E.L. Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control. Curr Biol 2009, 19:2114-2120.
    • (2009) Curr Biol , vol.19 , pp. 2114-2120
    • Jansen, J.M.1    Wanless, A.G.2    Seidel, C.W.3    Weiss, E.L.4
  • 46
    • 0032516080 scopus 로고    scopus 로고
    • The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae
    • Berset C., Trachsel H., Altmann M. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1998, 95:4264-4269.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 4264-4269
    • Berset, C.1    Trachsel, H.2    Altmann, M.3
  • 47
    • 42949130656 scopus 로고    scopus 로고
    • AMPK and Raptor: matching cell growth to energy supply
    • Hardie D.G. AMPK and Raptor: matching cell growth to energy supply. Mol Cell 2008, 30:263-265.
    • (2008) Mol Cell , vol.30 , pp. 263-265
    • Hardie, D.G.1
  • 48
    • 79957530990 scopus 로고    scopus 로고
    • Mechanisms of mTOR inhibitor resistance in cancer therapy
    • Carew J.S., Kelly K.R., Nawrocki S.T. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 2011, 6:17-27.
    • (2011) Target Oncol , vol.6 , pp. 17-27
    • Carew, J.S.1    Kelly, K.R.2    Nawrocki, S.T.3
  • 49
    • 38849208347 scopus 로고    scopus 로고
    • Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma
    • Cloughesy T.F., Yoshimoto K., Nghiemphu P., Brown K., Dang J., Zhu S., et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 2008, 5:e8.
    • (2008) PLoS Med , vol.5
    • Cloughesy, T.F.1    Yoshimoto, K.2    Nghiemphu, P.3    Brown, K.4    Dang, J.5    Zhu, S.6
  • 51
    • 75349099919 scopus 로고    scopus 로고
    • Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer
    • Fogarty S., Hardie D.G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 2010, 1804:581-591.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 581-591
    • Fogarty, S.1    Hardie, D.G.2
  • 52
    • 79953823344 scopus 로고    scopus 로고
    • Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion
    • da Silva Xavier G., Farhan H., Kim H., Caxaria S., Johnson P., Hughes S., et al. Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia 2011, 54:819-827.
    • (2011) Diabetologia , vol.54 , pp. 819-827
    • da Silva Xavier, G.1    Farhan, H.2    Kim, H.3    Caxaria, S.4    Johnson, P.5    Hughes, S.6
  • 53
    • 2942595906 scopus 로고    scopus 로고
    • Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose
    • da Silva Xavier G., Rutter J., Rutter G.A. Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci USA 2004, 101:8319-8324.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 8319-8324
    • da Silva Xavier, G.1    Rutter, J.2    Rutter, G.A.3
  • 54
    • 70349109268 scopus 로고    scopus 로고
    • Involvement of Per-Arnt-Sim kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells
    • Fontes G., Semache M., Hagman D.K., Tremblay C., Shah R., Rhodes C.J., et al. Involvement of Per-Arnt-Sim kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes 2009, 58:2048-2058.
    • (2009) Diabetes , vol.58 , pp. 2048-2058
    • Fontes, G.1    Semache, M.2    Hagman, D.K.3    Tremblay, C.4    Shah, R.5    Rhodes, C.J.6
  • 55
    • 83755181452 scopus 로고    scopus 로고
    • A human mutation within the per-ARNT-sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion
    • Semplici F., Vaxillaire M., Fogarty S., Semache M., Bonnefond A., Fontes G., et al. A human mutation within the per-ARNT-sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 2011.
    • (2011) J Biol Chem
    • Semplici, F.1    Vaxillaire, M.2    Fogarty, S.3    Semache, M.4    Bonnefond, A.5    Fontes, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.