메뉴 건너뛰기




Volumn 48, Issue 2-3, 2010, Pages 153-160

A new multiple regression approach for the construction of genetic regulatory networks

Author keywords

Gene regulatory network; Multiple regression; Power law; Statistical tests

Indexed keywords

BIOLOGICAL NETWORKS; DATA SETS; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; GENETIC NETWORKS; GENETIC REGULATORY NETWORKS; HIGH-THROUGHPUT; IN-BUILDINGS; LINEAR REGRESSION MODELS; MODEL FIT; MULTIPLE REGRESSION APPROACH; MULTIPLE REGRESSION MODEL; MULTIPLE REGRESSIONS; NUMERICAL EXAMPLE; NUMERICAL RESULTS; POWER-LAW; REGULATORY RELATIONSHIPS; RESEARCH TOPICS; SAMPLING TIME; SCALE-FREE PROPERTIES; SYSTEMS BIOLOGY; TIME-SERIES GENE EXPRESSION DATA; UNDERLYING NETWORKS; YEAST CELL CYCLES;

EID: 77951623857     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2009.11.001     Document Type: Article
Times cited : (31)

References (24)
  • 2
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002, 9:67-103.
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • de Jong, H.1
  • 3
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • Akutsu T., Miyano S., Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 2000, 16:727-734.
    • (2000) Bioinformatics , vol.16 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 4
    • 0000419877 scopus 로고    scopus 로고
    • Error-free and best-fit extensions of partially defined Boolean functions
    • Boros E., Ibaraki T., Makino K. Error-free and best-fit extensions of partially defined Boolean functions. Inform Comput 1998, 140:254-273.
    • (1998) Inform Comput , vol.140 , pp. 254-273
    • Boros, E.1    Ibaraki, T.2    Makino, K.3
  • 5
    • 33644618250 scopus 로고    scopus 로고
    • On construction of stochastic genetic networks based on gene expression sequences
    • Ching W., Fung E., Ng M., Akutsu T. On construction of stochastic genetic networks based on gene expression sequences. Int J Neural Syst 2005, 15:297-310.
    • (2005) Int J Neural Syst , vol.15 , pp. 297-310
    • Ching, W.1    Fung, E.2    Ng, M.3    Akutsu, T.4
  • 6
    • 24944466553 scopus 로고    scopus 로고
    • Estimating gene networks from expression data and binding location data via Boolean networks
    • Hirose O., Nariai N., Tamada Y., Bannai H., Imoto S., Miyano S. Estimating gene networks from expression data and binding location data via Boolean networks. Lect Note Comput Sci 2006, 3480:349-356.
    • (2006) Lect Note Comput Sci , vol.3480 , pp. 349-356
    • Hirose, O.1    Nariai, N.2    Tamada, Y.3    Bannai, H.4    Imoto, S.5    Miyano, S.6
  • 7
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: inference and experimental design
    • World Scientific Publishing Company, R.B. Altman, A.K. Dunker, L. Hunter, K. Lauderdale, T.E.D. Klein (Eds.)
    • Ideker T.E., Thorsson V., Karp R.M. Discovery of regulatory interactions through perturbation: inference and experimental design. Proceedings of the Pacific Symposium Biocomputing, vol. 5 2000, 302-313. World Scientific Publishing Company. R.B. Altman, A.K. Dunker, L. Hunter, K. Lauderdale, T.E.D. Klein (Eds.).
    • (2000) Proceedings of the Pacific Symposium Biocomputing, vol. 5 , pp. 302-313
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.M.3
  • 9
    • 8644221619 scopus 로고    scopus 로고
    • Inference of genetic regulatory networks under the best-fit extension paradigm
    • Kluwer, Boston, MA, W. Zhang, I. Shmulevich (Eds.)
    • Shmulevich I., Saarinen A., Yli-Harja O., Astola J. Inference of genetic regulatory networks under the best-fit extension paradigm. Computational and Statistical Approaches to Genomics 2002, 197-210. Kluwer, Boston, MA. W. Zhang, I. Shmulevich (Eds.).
    • (2002) Computational and Statistical Approaches to Genomics , pp. 197-210
    • Shmulevich, I.1    Saarinen, A.2    Yli-Harja, O.3    Astola, J.4
  • 10
    • 0032441150 scopus 로고    scopus 로고
    • Clustering analysis and display of genome-wide expression patterns
    • Eisen M., Spellman P., Brown P., Botsterin D. Clustering analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95:14863-14868.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botsterin, D.4
  • 11
    • 77951645202 scopus 로고    scopus 로고
    • Bayesian network software libB 2.1. (Accessed 20 June).
    • Friedman N, Elidan G. Bayesian network software libB 2.1. (Accessed 20 June 2009). http://www.cs.huji.ac.il/labs/compbio/LibB/.
    • (2009)
    • Friedman, N.1    Elidan, G.2
  • 12
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J., Smith V.A., Wang P.P., Hartemink A.J., Javis E.D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20:3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Javis, E.D.5
  • 13
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M., Giusy D.G., di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22:815-822.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Giusy, D.G.2    di Bernardo, D.3
  • 14
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • World Scientific Publishing Company, R.B. Altman, A.K. Dunker, L. Hunter, K. Lauderdale, T.E.D. Klein (Eds.)
    • D'haeseleer P., Wen X., Fuhrman S., Somogyi R. Linear modeling of mRNA expression levels during CNS development and injury. Proceedings Symposium Biocomputation 1999, 41-52. World Scientific Publishing Company. R.B. Altman, A.K. Dunker, L. Hunter, K. Lauderdale, T.E.D. Klein (Eds.).
    • (1999) Proceedings Symposium Biocomputation , pp. 41-52
    • D'haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 15
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., di Bernardo D., Lorenz D., Collins J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 16
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling
    • Tegner J., Yeung M.K., Hasty J., Collins J.J. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 2003, 100(10):5944-5949.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.10 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 19
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabási A.L., Albert R. Emergence of scaling in random networks. Science 1999, 286:509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.L.1    Albert, R.2
  • 20
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • Guelzim N., Bottani S., Bourgine P., Képès F. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002, 31:60-63.
    • (2002) Nat Genet , vol.31 , pp. 60-63
    • Guelzim, N.1    Bottani, S.2    Bourgine, P.3    Képès, F.4
  • 23
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung K.Y., Ruzzo W.L. Principal component analysis for clustering gene expression data. Bioinformatics 2001, 17:763-774.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.