메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages

Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; BIOLOGY; EVALUATION; GENE REGULATORY NETWORK; GENE SILENCING; METHODOLOGY; NORMAL DISTRIBUTION; TIME;

EID: 34548538013     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-1-11     Document Type: Article
Times cited : (108)

References (47)
  • 1
    • 0032549745 scopus 로고    scopus 로고
    • Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene
    • 10.1126/science.279.5358.1896 9506933
    • Yuh CH, Bolouri H, Davidson EH: Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 1998, 279(5358):1896-1902. 10.1126/science.279.5358.1896 9506933
    • (1998) Science , vol.279 , Issue.5358 , pp. 1896-1902
    • Yuh, C.H.1    Bolouri, H.2    Davidson, E.H.3
  • 3
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • 10.1038/ng724 11547334
    • Pilpel Y, Sudarsanam P, Church GM: Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 2001, 29(2):153-159. 10.1038/ng724 11547334
    • (2001) Nat Genet , vol.29 , Issue.2 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 4
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • 12740579
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34(2):166-176. 12740579
    • (2003) Nat Genet , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 6
    • 13844319583 scopus 로고    scopus 로고
    • Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation
    • 548531 15684073 10.1073/pnas.0405537102
    • Wang W, Cherry JM, Nochomovitz Y, Jolly E, Botstein D, Li H: Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation. Proc Natl Acad Sci USA 2005, 102(6):1998-2003. 548531 15684073 10.1073/pnas.0405537102
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.6 , pp. 1998-2003
    • Wang, W.1    Cherry, J.M.2    Nochomovitz, Y.3    Jolly, E.4    Botstein, D.5    Li, H.6
  • 7
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601-620. 10.1089/ 106652700750050961 11108481
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 8
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • 11262961
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput 2001, 422-433. 11262961
    • (2001) Pac Symp Biocomput , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 9
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • 10.1093/bioinformatics/bth941
    • Nachman I, Regev A, Friedman N: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004, 4(20 Suppl 1):I248-I256. 10.1093/bioinformatics/bth941
    • (2004) Bioinformatics , vol.4 , Issue.20 SUPPL. 1
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 10
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • 10.1073/pnas.092576199
    • Yeung MK, Tegner J, Collins JJ: Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci USA 2003, 99(9):6163-6168. 10.1073/pnas.092576199
    • (2003) Proc Natl Acad Sci USA , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 11
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • 10.1093/bioinformatics/bti226 15613398
    • Guthke R, Müller U, Hoffmann M, Thies F, Töpfer S: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21(8):1626-1634. 10.1093/bioinformatics/bti226 15613398
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1626-1634
    • Guthke, R.1    Müller, U.2    Hoffmann, M.3    Thies, F.4    Töpfer, S.5
  • 12
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • 10.1093/bioinformatics/bti487 15879452
    • Rogers S, Girolami M: A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 2005, 21(14):3131-3137. 10.1093/bioinformatics/bti487 15879452
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 13
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • 10.1093/bioinformatics/bti064 15486043
    • Rice JJ, Tu Y, Stolovitzky G: Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005, 21(6):765-773. 10.1093/bioinformatics/bti064 15486043
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 765-773
    • Rice, J.J.1    Tu, Y.2    Stolovitzky, G.3
  • 15
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • 10.1093/bioinformatics/bti062 15479708
    • Schafer J, Strimmer K: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21(6):754-764. 10.1093/bioinformatics/bti062 15479708
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 16
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • 9697168
    • Liang S, Fuhrman S, Somogyi R: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 1998:18-29. 9697168
    • (1998) Pac Symp Biocomput , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 18
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
    • 130547 12242336 10.1073/pnas.192442699
    • Kholodenko B, Kiyatkin A, Bruggeman F, Sontag E, Westerhoff H, Hoek J: Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 2002, 99(20):12841-12846. 130547 12242336 10.1073/pnas.192442699
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.20 , pp. 12841-12846
    • Kholodenko, B.1    Kiyatkin, A.2    Bruggeman, F.3    Sontag, E.4    Westerhoff, H.5    Hoek, J.6
  • 19
    • 9644284380 scopus 로고    scopus 로고
    • Inference of signaling and gene regulatory networks by steady-state perturbation experiments: Structure and accuracy
    • 15572066
    • Andrec M, Kholodenko BN, Levy RM, Sontag E: Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J Theor Biol 2005, 232(3):427-441. 15572066
    • (2005) J Theor Biol , vol.232 , Issue.3 , pp. 427-441
    • Andrec, M.1    Kholodenko, B.N.2    Levy, R.M.3    Sontag, E.4
  • 21
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • 10.1093/bioinformatics/btg313 14630656
    • Husmeier D: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-82. 10.1093/bioinformatics/btg313 14630656
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 22
    • 0035684378 scopus 로고    scopus 로고
    • A Model for Measurement Error for Gene Expression Arrays
    • 10.1089/106652701753307485
    • Rocke D, Durbin B: A Model for Measurement Error for Gene Expression Arrays. J Comp Biol 2001, 8(6):557-569. 10.1089/106652701753307485
    • (2001) J Comp Biol , vol.8 , Issue.6 , pp. 557-569
    • Rocke, D.1    Durbin, B.2
  • 23
    • 28944434119 scopus 로고    scopus 로고
    • Real-time kinetics of gene activity in individual bacteria
    • 10.1016/j.cell.2005.09.031 16360033
    • Golding I, Paulsson J, Zawilski SM, Cox EC: Real-time kinetics of gene activity in individual bacteria. Cell 2005, 123(6):1025-1036. 10.1016/ j.cell.2005.09.031 16360033
    • (2005) Cell , vol.123 , Issue.6 , pp. 1025-1036
    • Golding, I.1    Paulsson, J.2    Zawilski, S.M.3    Cox, E.C.4
  • 24
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • 25624 9843569
    • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, B F: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9(12):3273-3297. 25624 9843569
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.B.F.8
  • 26
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian Network Inference for Generating Causal Networks from Observational Biological Data
    • 10.1093/bioinformatics/bth448 15284094
    • Yu J, Smith V, Wang P, Hartemink AJ, Jarvis E: Advances to Bayesian Network Inference for Generating Causal Networks from Observational Biological Data. Bioinformatics 2004, 20(18):3594-3603. 10.1093/ bioinformatics/bth448 15284094
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.J.4    Jarvis, E.5
  • 27
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • 10.1093/bioinformatics/bti014 15353451
    • Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 2004, 21(3)349-356. 10.1093/bioinformatics/ bti014 15353451
    • (2004) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 28
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • 15759651
    • Bernard A, Hartemink AJ:JInformative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac Symp Biocomput 2005:459-470. 15759651
    • (2005) Pac Symp Biocomput , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 29
    • 0034921979 scopus 로고    scopus 로고
    • Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data
    • 10.1089/10665270050514945 11382363
    • Ideker T, Thorsson V, Siegel AF, Hood LE: Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data. Journal of Computational Biology 2000, 7(6):805-817. 10.1089/10665270050514945 11382363
    • (2000) Journal of Computational Biology , vol.7 , Issue.6 , pp. 805-817
    • Ideker, T.1    Thorsson, V.2    Siegel, A.F.3    Hood, L.E.4
  • 31
    • 0242490789 scopus 로고    scopus 로고
    • Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network
    • 403758 14597654 10.1101/gr.1198103
    • Zak D, Gonye G, Schwaber J, Doyle F: Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network. Genome Res 2003, 13(11):2396-2405. 403758 14597654 10.1101/gr.1198103
    • (2003) Genome Res , vol.13 , Issue.11 , pp. 2396-2405
    • Zak, D.1    Gonye, G.2    Schwaber, J.3    Doyle, F.4
  • 32
    • 20044366920 scopus 로고    scopus 로고
    • Cell microarrays and RNA interference chip away at gene function
    • 10.1038/ng1560 15920526
    • Wheeler DB, Carpenter AE, Sabatini DM: Cell microarrays and RNA interference chip away at gene function. Nat Genet 2005, 37:S25-S30. 10.1038/ng1560 15920526
    • (2005) Nat Genet , vol.37
    • Wheeler, D.B.1    Carpenter, A.E.2    Sabatini, D.M.3
  • 33
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • 10.1093/bioinformatics/btl391 16844710
    • Werhli AV, Grzegorczyk M, Husmeier D: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006, 22(20):2523-2531. 10.1093/bioinformatics/btl391 16844710
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 34
    • 4243681745 scopus 로고    scopus 로고
    • Principled Computational Methods for the Validation and Discovery of Genetic Regulatory Networks
    • Hartemink A: Principled Computational Methods for the Validation and Discovery of Genetic Regulatory Networks. PhD thesis MIT 2001
    • (2001) PhD Thesis
    • Hartemink, A.1
  • 35
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • 407845 15113405 10.1186/1471-2105-5-31
    • Gao F, Foat BC, Bussemaker HJ: Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 2004, 5:31. 407845 15113405 10.1186/ 1471-2105-5-31
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1    Foat, B.C.2    Bussemaker, H.J.3
  • 36
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach
    • 1182396 15978125 10.1186/1742-4682-2-23
    • Boulesteix A, Strimmer K: Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach. Theor Biol Med Model 2005, 2:23. 1182396 15978125 10.1186/1742-4682-2-23
    • (2005) Theor Biol Med Model , vol.2 , pp. 23
    • Boulesteix, A.1    Strimmer, K.2
  • 37
    • 33745431808 scopus 로고    scopus 로고
    • Deciphering principles of transcriptional regulation in eukaryotic genomes
    • [Doi:10.1038/msb4100054]. 1681486 16738557
    • Nguyen DH, D'haeseleer PD: Deciphering principles of transcriptional regulation in eukaryotic genomes. Mol Syst Biol 2006 [Doi:10.1038/ msb4100054]. 1681486 16738557
    • (2006) Mol Syst Biol
    • Nguyen, D.H.1    D'haeseleer, P.D.2
  • 38
    • 18344386042 scopus 로고    scopus 로고
    • Cell cycle-dependent transcription in yeast: Promoters, transcription factors, and transcriptomes
    • 10.1038/sj.onc.1208606 15838511
    • Wittenberg C, Reed SI: Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 2005, 24(17):2746-2755. 10.1038/sj.onc.1208606 15838511
    • (2005) Oncogene , vol.24 , Issue.17 , pp. 2746-2755
    • Wittenberg, C.1    Reed, S.I.2
  • 39
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper GF, Herskovits E: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992, 9:309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 41
    • 0003846045 scopus 로고
    • Learning Bayesian Networks
    • Microsoft Research, Redmond, WA
    • Heckerman D, Geiger D: Learning Bayesian Networks. Tech Rep MSR-TR-95-02 Microsoft Research, Redmond, WA 1994 http://citeseer.ist.psu.edu/ 75203.html
    • (1994) Tech Rep MSR-TR-95-02
    • Heckerman, D.1    Geiger, D.2
  • 45
    • 17644412264 scopus 로고    scopus 로고
    • Bayesian network analysis of signaling networks: A primer
    • Pe'er D: Bayesian network analysis of signaAing networks: a primer. Sci STKE 2005, 2005(281):p14
    • (2005) Sci STKE , vol.2005 , Issue.281 , pp. 14
    • Pe'er, D.1
  • 46
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to Monte Carlo Methods
    • NATO Science Series, Kluwer Jordan MI
    • MacKay DJC: Introduction to Monte Carlo Methods. Learning in Graphical Models. NATO Science Series, Kluwer Jordan MI 1998:175-204
    • (1998) Learning in Graphical Models , pp. 175-204
    • MacKay, D.J.C.1
  • 47
    • 28444445926 scopus 로고    scopus 로고
    • R Development Core Team: R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria 2005 http://www.R-project.org
    • (2005) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.