메뉴 건너뛰기




Volumn 92, Issue 10, 2007, Pages 3513-3523

Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel

Author keywords

[No Author keywords available]

Indexed keywords

ASPARTIC ACID; CYSTEINE; GLUTAMIC ACID; LYSINE; SHAKER POTASSIUM CHANNEL; VOLTAGE GATED SODIUM CHANNEL;

EID: 34247880407     PISSN: 00063495     EISSN: None     Source Type: Journal    
DOI: 10.1529/biophysj.106.090464     Document Type: Article
Times cited : (25)

References (40)
  • 3
    • 23244467740 scopus 로고    scopus 로고
    • The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel
    • Pavlov, E., C. Bladen, R. Winkfein, C. Diao, P. Dhaliwal, and R. J. French. 2005. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89:232-242.
    • (2005) Biophys. J , vol.89 , pp. 232-242
    • Pavlov, E.1    Bladen, C.2    Winkfein, R.3    Diao, C.4    Dhaliwal, P.5    French, R.J.6
  • 4
    • 0036899251 scopus 로고    scopus 로고
    • The cation selectivity filter of the bacterial sodium channel, NaChBac
    • Yue, L., B. Navarro, D. Ren, A. Ramos, and D. E. Clapham. 2002. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120:845-853.
    • (2002) J. Gen. Physiol , vol.120 , pp. 845-853
    • Yue, L.1    Navarro, B.2    Ren, D.3    Ramos, A.4    Clapham, D.E.5
  • 5
    • 23244441222 scopus 로고    scopus 로고
    • Voltage sensor of Kv1.2: Structural basis of electromechanical coupling
    • Long, S. B., E. B. Campbell, and R. MacKinnon. 2005. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science. 309:903-908.
    • (2005) Science , vol.309 , pp. 903-908
    • Long, S.B.1    Campbell, E.B.2    MacKinnon, R.3
  • 6
    • 21744438625 scopus 로고    scopus 로고
    • Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor
    • Murata, Y., H. Iwasaki, M. Sasaki, K. Inaba, and Y. Okamura. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature. 435:1239-1243.
    • (2005) Nature , vol.435 , pp. 1239-1243
    • Murata, Y.1    Iwasaki, H.2    Sasaki, M.3    Inaba, K.4    Okamura, Y.5
  • 7
    • 33646229810 scopus 로고    scopus 로고
    • A voltage sensor-domain protein is a voltage-gated proton channel
    • Sasaki, M., M. Takagi, and Y. Okamura. 2006. A voltage sensor-domain protein is a voltage-gated proton channel. Science. 312:589-592.
    • (2006) Science , vol.312 , pp. 589-592
    • Sasaki, M.1    Takagi, M.2    Okamura, Y.3
  • 8
    • 33646358260 scopus 로고    scopus 로고
    • A voltage-gated proton-selective channel lacking the pore domain
    • Ramsey, I. S., M. M. Moran, J. A. Chong, and D. E. Clapham. 2006. A voltage-gated proton-selective channel lacking the pore domain. Nature. 440:1213-1216.
    • (2006) Nature , vol.440 , pp. 1213-1216
    • Ramsey, I.S.1    Moran, M.M.2    Chong, J.A.3    Clapham, D.E.4
  • 9
    • 0034017867 scopus 로고    scopus 로고
    • The voltage sensor in voltage-dependent ion channels
    • Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555-592.
    • (2000) Physiol. Rev , vol.80 , pp. 555-592
    • Bezanilla, F.1
  • 13
    • 0030893809 scopus 로고    scopus 로고
    • Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits
    • Tiwari-Woodruff, S.K., C. T. Schulteis, A. F. Mock, and D. M. Papazian. 1997. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys. J. 72:1489-1500.
    • (1997) Biophys. J , vol.72 , pp. 1489-1500
    • Tiwari-Woodruff, S.K.1    Schulteis, C.T.2    Mock, A.F.3    Papazian, D.M.4
  • 14
    • 3142682246 scopus 로고    scopus 로고
    • The screw-helical voltage gating of ion channels
    • Keynes, R. D., and F. Elinder. 1999. The screw-helical voltage gating of ion channels. Proc. R. Soc. Lond. B Biol. Sci. 266:843-852.
    • (1999) Proc. R. Soc. Lond. B Biol. Sci , vol.266 , pp. 843-852
    • Keynes, R.D.1    Elinder, F.2
  • 15
    • 27944456416 scopus 로고    scopus 로고
    • Voltage gating and anions, especially phosphate: A model system
    • Pradhan, P., R. Ghose, and M. E. Green. 2005. Voltage gating and anions, especially phosphate: a model system. Biochim. Biophys. Acta. 1717:97-103.
    • (2005) Biochim. Biophys. Acta , vol.1717 , pp. 97-103
    • Pradhan, P.1    Ghose, R.2    Green, M.E.3
  • 16
    • 11844275930 scopus 로고    scopus 로고
    • A possible role for phosphate in complexing the arginines of S4 in voltage gated channels
    • Green, M. E. 2005. A possible role for phosphate in complexing the arginines of S4 in voltage gated channels. J. Theor. Biol. 233:337-341.
    • (2005) J. Theor. Biol , vol.233 , pp. 337-341
    • Green, M.E.1
  • 18
    • 1942532321 scopus 로고    scopus 로고
    • Computer simulation of the KvAP voltage-gated potassium channel: Steered molecular dynamics of the voltage sensor
    • Monticelli, L., K. M. Robertson, J. L. MacCallum, and D. P. Tieleman. 2004. Computer simulation of the KvAP voltage-gated potassium channel: steered molecular dynamics of the voltage sensor. FEBS Lett. 564:325-332.
    • (2004) FEBS Lett , vol.564 , pp. 325-332
    • Monticelli, L.1    Robertson, K.M.2    MacCallum, J.L.3    Tieleman, D.P.4
  • 19
    • 0036902235 scopus 로고    scopus 로고
    • Close-range electrostatic interactions in proteins
    • Kumar, S., and R. Nussinov. 2002. Close-range electrostatic interactions in proteins. ChemBioChem. 3:604-617.
    • (2002) ChemBioChem , vol.3 , pp. 604-617
    • Kumar, S.1    Nussinov, R.2
  • 20
    • 0027360771 scopus 로고
    • Panning transfected cells for electrophysiological studies
    • Margolskee, R. F., B. McHendry-Rinde, and R. Horn. 1993. Panning transfected cells for electrophysiological studies. Biotechniques. 15:906-911.
    • (1993) Biotechniques , vol.15 , pp. 906-911
    • Margolskee, R.F.1    McHendry-Rinde, B.2    Horn, R.3
  • 21
    • 0027970398 scopus 로고
    • Visual identification of individual transfected cells for electrophysiology using antibody-coated beads
    • Jurman, M. E., L. M. Boland, Y. Liu, and G. Yellen. 1994. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 17:876-881.
    • (1994) Biotechniques , vol.17 , pp. 876-881
    • Jurman, M.E.1    Boland, L.M.2    Liu, Y.3    Yellen, G.4
  • 23
    • 0034623005 scopus 로고    scopus 로고
    • T-Coffee: A novel method for fast and accurate multiple sequence alignment
    • Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302:205-217.
    • (2000) J. Mol. Biol , vol.302 , pp. 205-217
    • Notredame, C.1    Higgins, D.G.2    Heringa, J.3
  • 24
    • 0034106351 scopus 로고    scopus 로고
    • Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships
    • Zhorov, B. S., and P. D. Bregestovski. 2000. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Biophys. J. 78:1786-1803.
    • (2000) Biophys. J , vol.78 , pp. 1786-1803
    • Zhorov, B.S.1    Bregestovski, P.D.2
  • 25
    • 0020702779 scopus 로고
    • Topography of the active site of the noradrenaline neuronal membrane carrier based on the theoretical conformation analysis of inhibitors of neuronal catecholamine uptake
    • Zhorov, B. S. 1983. Topography of the active site of the noradrenaline neuronal membrane carrier based on the theoretical conformation analysis of inhibitors of neuronal catecholamine uptake. Bioorg. Khim. 9:200-215.
    • (1983) Bioorg. Khim , vol.9 , pp. 200-215
    • Zhorov, B.S.1
  • 27
    • 26744440015 scopus 로고
    • Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids
    • Brooks, C. L. I., B. M. Pettitt, and M. Karplus. 1985. Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. J. Chem. Phys. 83:5897-5908.
    • (1985) J. Chem. Phys , vol.83 , pp. 5897-5908
    • Brooks, C.L.I.1    Pettitt, B.M.2    Karplus, M.3
  • 28
    • 0033135638 scopus 로고    scopus 로고
    • Effective energy function for proteins in solution
    • Lazaridis, T., and M. Karplus. 1999. Effective energy function for proteins in solution. Proteins. 35:133-152.
    • (1999) Proteins , vol.35 , pp. 133-152
    • Lazaridis, T.1    Karplus, M.2
  • 29
    • 0023430366 scopus 로고
    • Monte Carlo-minimization approach to the multiple-minima problem in protein folding
    • Li, Z., and H. A. Scheraga. 1987. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA. 84:6611-6615.
    • (1987) Proc. Natl. Acad. Sci. USA , vol.84 , pp. 6611-6615
    • Li, Z.1    Scheraga, H.A.2
  • 31
    • 0034003769 scopus 로고    scopus 로고
    • Monte Carlo-minimized energy profile of estradiol in the ligand-binding tunnel of 17 beta-hydroxysteroid dehydrogenase: Atomic mechanisms of steroid recognition
    • Zhorov, B. S., and S. X. Lin. 2000. Monte Carlo-minimized energy profile of estradiol in the ligand-binding tunnel of 17 beta-hydroxysteroid dehydrogenase: atomic mechanisms of steroid recognition. Proteins. 38:414-427.
    • (2000) Proteins , vol.38 , pp. 414-427
    • Zhorov, B.S.1    Lin, S.X.2
  • 34
    • 1142274549 scopus 로고    scopus 로고
    • A proton pore in a potassium channel voltage sensor reveals a focused electric field
    • Starace, D. M., and F. Bezanilla. 2004. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature. 427:548-553.
    • (2004) Nature , vol.427 , pp. 548-553
    • Starace, D.M.1    Bezanilla, F.2
  • 36
    • 0033550299 scopus 로고    scopus 로고
    • Salt bridge stability in monomeric proteins
    • Kumar, S., and R. Nussinov. 1999. Salt bridge stability in monomeric proteins. J. Mol. Biol. 293:1241-1255.
    • (1999) J. Mol. Biol , vol.293 , pp. 1241-1255
    • Kumar, S.1    Nussinov, R.2
  • 37
    • 33646135082 scopus 로고    scopus 로고
    • Environment of the gating charges in the Kv1.2 Shaker potassium channel
    • Treptow, W., and M. Tarek. 2006. Environment of the gating charges in the Kv1.2 Shaker potassium channel. Biophys. J. 90:L64-L66.
    • (2006) Biophys. J , vol.90
    • Treptow, W.1    Tarek, M.2
  • 38
    • 33646550515 scopus 로고    scopus 로고
    • Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels
    • Yarov-Yarovoy, V., D. Baker, and W. A. Catterall. 2006. Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. Proc. Natl. Acad. Sci. USA. 103:7292-7297.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 7292-7297
    • Yarov-Yarovoy, V.1    Baker, D.2    Catterall, W.A.3
  • 40
    • 2942651050 scopus 로고    scopus 로고
    • Detecting rearrangements of Shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells
    • Blunck, R., D. M. Starace, A. M. Correa, and F. Bezanilla. 2004. Detecting rearrangements of Shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys. J. 86:3966-3980.
    • (2004) Biophys. J , vol.86 , pp. 3966-3980
    • Blunck, R.1    Starace, D.M.2    Correa, A.M.3    Bezanilla, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.