메뉴 건너뛰기




Volumn 23, Issue 10, 2012, Pages 1986-1997

A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOSYNTHESIS; CELL CYCLE; CELL CYCLE G0 PHASE; CELL CYCLE G1 PHASE; CELL CYCLE G2 PHASE; CELL DIVISION; CELL GROWTH; CELL STRESS; CONTROLLED STUDY; CROSS PROTECTION; ENVIRONMENTAL STRESS; EUKARYOTE; FIBROBLAST; FUNGAL GENE; GENE EXPRESSION; HEAT STRESS; HUMAN; HUMAN CELL; NONHUMAN; OXYGEN CONSUMPTION; PHASE TRANSITION; PRIORITY JOURNAL; SCHIZOSACCHAROMYCES POMBE; SPECIES DIVERSITY; TRANSCRIPTION REGULATION; YEAST;

EID: 84861120908     PISSN: 10591524     EISSN: 19394586     Source Type: Journal    
DOI: 10.1091/mbc.E11-11-0961     Document Type: Article
Times cited : (35)

References (77)
  • 2
    • 0018331215 scopus 로고
    • Analysis of the significance of a periodic, cell size-controlled doubling in rates of macromolecular synthesis for the control of balanced exponential growth of fission yeast cells
    • Barnes A, Nurse P, Fraser R (1979). Analysis of the significance of a periodic, cell size-controlled doubling in rates of macromolecular synthesis for the control of balanced exponential growth of fission yeast cells. J Cell Sci 35, 41-51. (Pubitemid 9092069)
    • (1979) Journal of Cell Science , vol.VOL.35 , pp. 41-51
    • Barnes, A.1    Nurse, P.2    Fraser, R.S.S.3
  • 3
    • 33747880238 scopus 로고    scopus 로고
    • Endocrine signaling in Caenorhabditis elegans controls stress response and longevity
    • Baumeister R, Schaffitzel E, Hertweck M (2006). Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190, 191.
    • (2006) J Endocrinol , vol.190 , pp. 191
    • Baumeister, R.1    Schaffitzel, E.2    Hertweck, M.3
  • 4
    • 0020383408 scopus 로고
    • Functionally homologous cell cycle control genes in budding and fission yeast
    • DOI 10.1038/300706a0
    • Beach D, Durkacz B, Nurse P (1982). Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300, 706-709. (Pubitemid 13224345)
    • (1982) Nature , vol.300 , Issue.5894 , pp. 706-709
    • Beach, D.1    Durkacz, B.2    Nurse, P.3
  • 5
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T, Hall M (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692. (Pubitemid 129516342)
    • (1999) Nature , vol.402 , Issue.6762 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 6
    • 55449104987 scopus 로고    scopus 로고
    • Stress-activated genomic expression changes serve a preparative role for impending stress in yeast
    • Berry DB, Gasch AP (2008). Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19, 4580-4587.
    • (2008) Mol Biol Cell , vol.19 , pp. 4580-4587
    • Berry, D.B.1    Gasch, A.P.2
  • 9
    • 12344269924 scopus 로고    scopus 로고
    • GO::TermFinder - Open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes
    • DOI 10.1093/bioinformatics/bth456
    • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004). GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710-3715. (Pubitemid 40136825)
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3710-3715
    • Boyle, E.I.1    Weng, S.2    Gollub, J.3    Jin, H.4    Botstein, D.5    Cherry, J.M.6    Sherlock, G.7
  • 14
    • 0036198149 scopus 로고    scopus 로고
    • Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity
    • Cypser J, Johnson T (2002). Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57, B109.
    • (2002) J Gerontol A Biol Sci Med Sci , vol.57
    • Cypser, J.1    Johnson, T.2
  • 16
    • 0027394165 scopus 로고
    • Stress resistance of yeast cells is largely independent of cell cycle phase
    • DOI 10.1002/yea.320090105
    • Elliott B, Futcher B (1993). Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9, 33-42. (Pubitemid 23043243)
    • (1993) Yeast , vol.9 , Issue.1 , pp. 33-42
    • Elliott, B.1    Futcher, B.2
  • 17
    • 80052270400 scopus 로고    scopus 로고
    • Bayesian meta-analysis for identifying periodically expressed genes in fission yeast cell cycle
    • Fan X (2010). Bayesian meta-analysis for identifying periodically expressed genes in fission yeast cell cycle. Ann Appl Statist 4, 988-1013.
    • (2010) Ann Appl Statist , vol.4 , pp. 988-1013
    • Fan, X.1
  • 18
    • 0003068294 scopus 로고
    • Fermentation process control, population dynamics of a continuous propagator for microorganisms
    • Finn RK, Wilson RE (1954). Fermentation process control, population dynamics of a continuous propagator for microorganisms. J Agric Food Chem 2, 66-69.
    • (1954) J Agric Food Chem , vol.2 , pp. 66-69
    • Finn, R.K.1    Wilson, R.E.2
  • 19
    • 0017876853 scopus 로고
    • Novel cell cycle control of RNA synthesis in yeast
    • Fraser R, Nurse P (1978). Novel cell cycle control of RNA synthesis in yeast. Nature 271, 726.
    • (1978) Nature , vol.271 , pp. 726
    • Fraser, R.1    Nurse, P.2
  • 20
    • 0018331204 scopus 로고
    • Altered patterns of ribonucleic acid synthesis during the cell cycle: A mechanism compensating for variation in gene concentration
    • Fraser R, Nurse P (1979). Altered patterns of ribonucleic acid synthesis during the cell cycle: a mechanism compensating for variation in gene concentration. J Cell Sci 35, 25-40. (Pubitemid 9092068)
    • (1979) Journal of Cell Science , vol.VOL.35 , pp. 25-40
    • Fraser, R.S.S.1    Nurse, P.2
  • 23
    • 84855424553 scopus 로고    scopus 로고
    • Signal-dependent dynamics of transcription factor translocation controls gene expression
    • Hao N, O'Shea E (2011). Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol 19, 31-39.
    • (2011) Nat Struct Mol Biol , vol.19 , pp. 31-39
    • Hao, N.1    O'Shea, E.2
  • 24
    • 0015796354 scopus 로고
    • Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae
    • Hartwell LH (1973). Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 115, 966-974.
    • (1973) J Bacteriol , vol.115 , pp. 966-974
    • Hartwell, L.H.1
  • 25
    • 0015847513 scopus 로고
    • Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants
    • Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973). Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74, 267-286.
    • (1973) Genetics , vol.74 , pp. 267-286
    • Hartwell, L.H.1    Mortimer, R.K.2    Culotti, J.3    Culotti, M.4
  • 26
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Heiden MGV, Cantley LC, Thompson CB (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Heiden, M.G.V.1    Cantley, L.C.2    Thompson, C.B.3
  • 28
  • 29
    • 61849135453 scopus 로고    scopus 로고
    • Tumor suppressors and cell metabolism: A recipe for cancer growth
    • Jones R, Thompson C (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23, 537-548.
    • (2009) Genes Dev , vol.23 , pp. 537-548
    • Jones, R.1    Thompson, C.2
  • 31
    • 0014653084 scopus 로고
    • Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth
    • Kaspar von Meyenburg H (1969). Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Microbiol 66, 289-303.
    • (1969) Arch Microbiol , vol.66 , pp. 289-303
    • Kaspar Von Meyenburg, H.1
  • 33
    • 0014653793 scopus 로고
    • Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae
    • Küenzi MT, Fiechter A (1969). Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 64, 396-407.
    • (1969) Arch Mikrobiol , vol.64 , pp. 396-407
    • Küenzi, M.T.1    Fiechter, A.2
  • 34
    • 55449107183 scopus 로고    scopus 로고
    • Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates
    • Kvitek DJ, Will JL, Gasch AP (2008). Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4, e1000223.
    • (2008) PLoS Genet , vol.4
    • Kvitek, D.J.1    Will, J.L.2    Gasch, A.P.3
  • 35
    • 0037436133 scopus 로고    scopus 로고
    • 2S production during ultradian metabolic oscillation of Saccharomyces cerevisiae
    • DOI 10.1016/S0378-1097(02)01198-9
    • Kwak WJ, Kwon GS, Jin I, Kuriyama H, Sohn HY (2003). Involvement of oxidative stress in the regulation of H(2)S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol Lett 219, 99-104. (Pubitemid 36194785)
    • (2003) FEMS Microbiology Letters , vol.219 , Issue.1 , pp. 99-104
    • Kwak, W.-J.1    Kwon, G.-S.2    Jin, I.3    Kuriyama, H.4    Sohn, H.-Y.5
  • 36
    • 78349311963 scopus 로고    scopus 로고
    • Systems approaches for the study of metabolic cycles in yeast
    • Laxman S, Tu BP (2010). Systems approaches for the study of metabolic cycles in yeast. Curr Opin Genet Dev 20, 599-604.
    • (2010) Curr Opin Genet Dev , vol.20 , pp. 599-604
    • Laxman, S.1    Tu, B.P.2
  • 38
    • 78649711427 scopus 로고    scopus 로고
    • The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
    • Levine A, Puzio-Kuter A (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340.
    • (2010) Science , vol.330 , pp. 1340
    • Levine, A.1    Puzio-Kuter, A.2
  • 39
    • 0011731673 scopus 로고
    • Respiratory oscillations and heat evolution in synchronously dividing cultures of the fission yeast Schizosaccharomyces pombe 972h
    • Lloyd D, Kemp RB, Poole RK (1976). Respiratory oscillations and heat evolution in synchronously dividing cultures of the fission yeast Schizosaccharomyces pombe 972h. Microbiology 77, 209-220.
    • (1976) Microbiology , vol.77 , pp. 209-220
    • Lloyd, D.1    Kemp, R.B.2    Poole, R.K.3
  • 40
    • 64049092699 scopus 로고    scopus 로고
    • Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
    • Lu C, Brauer MJ, Botstein D (2009). Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20, 891-903.
    • (2009) Mol Biol Cell , vol.20 , pp. 891-903
    • Lu, C.1    Brauer, M.J.2    Botstein, D.3
  • 42
    • 0020062196 scopus 로고
    • Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary growth phase
    • DOI 10.2307/3575706
    • Mitchel REJ, Morrison DP (1982). Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary growth phase. Radiation Res 90, 284-291. (Pubitemid 12157045)
    • (1982) Radiation Research , vol.90 , Issue.2 , pp. 284-291
    • Mitchel, R.E.J.1    Morrison, D.P.2
  • 43
    • 0021082018 scopus 로고
    • Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae
    • Mitchel REJ, Morrison DP (1983). Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae. Radiation Res 96, 95-99.
    • (1983) Radiation Res , vol.96 , pp. 95-99
    • Mitchel, R.E.J.1    Morrison, D.P.2
  • 44
    • 67749089562 scopus 로고    scopus 로고
    • A hyperfused mitochondrial state achieved at G1-S regulates cyclin e buildup and entry into S phase
    • Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J (2009). A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA 106, 11960-11965.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 11960-11965
    • Mitra, K.1    Wunder, C.2    Roysam, B.3    Lin, G.4    Lippincott-Schwartz, J.5
  • 45
    • 80052039000 scopus 로고    scopus 로고
    • Redox regulation in respiring Saccharomyces cerevisiae
    • Murray DB, Haynes K, Tomita M (2011). Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta 1810, 945-958.
    • (2011) Biochim Biophys Acta , vol.1810 , pp. 945-958
    • Murray, D.B.1    Haynes, K.2    Tomita, M.3
  • 46
    • 34447271553 scopus 로고    scopus 로고
    • A tuneable attractor underlies yeast respiratory dynamics
    • DOI 10.1016/j.biosystems.2006.09.032, PII S0303264706001833
    • Murray DB, Lloyd D (2007). A tuneable attractor underlies yeast respiratory dynamics. Biosystems 90, 287-294. (Pubitemid 47039275)
    • (2007) BioSystems , vol.90 , Issue.1 , pp. 287-294
    • Murray, D.B.1    Lloyd, D.2
  • 48
    • 0019394338 scopus 로고
    • 2 for control of mitosis in fission yeast
    • DOI 10.1038/292558a0
    • Nurse P, Bissett Y (1981). Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292, 558-560. (Pubitemid 11023994)
    • (1981) Nature , vol.292 , Issue.5823 , pp. 558-560
    • Nurse, P.1    Bissett, Y.2
  • 49
    • 0015959781 scopus 로고
    • Amino acid pools and metabolism during the cell division cycle of arginine-grown Candida utilis
    • Nurse P, Wiemken A (1974). Amino acid pools and metabolism during the cell division cycle of arginine-grown Candida utilis. J Bacteriol 117, 1108-1116.
    • (1974) J Bacteriol , vol.117 , pp. 1108-1116
    • Nurse, P.1    Wiemken, A.2
  • 51
    • 77749254890 scopus 로고    scopus 로고
    • Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation
    • Ozbudak EM, Tassy O, Pourqui O (2010). Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc Natl Acad Sci USA 107, 4224-4229.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 4224-4229
    • Ozbudak, E.M.1    Tassy, O.2    Pourqui, O.3
  • 52
    • 77249091690 scopus 로고    scopus 로고
    • Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast
    • Pancaldi V, Schubert F, Bhler J (2010). Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast. Mol BioSyst 6, 543-552.
    • (2010) Mol BioSyst , vol.6 , pp. 543-552
    • Pancaldi, V.1    Schubert, F.2    Bhler, J.3
  • 53
    • 84872052998 scopus 로고    scopus 로고
    • Identification of cell cycle-regulated genes in fission yeast
    • E04-04-0299
    • Peng X et al. (2004). Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell E04-04-0299.
    • (2004) Mol Biol Cell
    • Peng, X.1
  • 54
  • 55
    • 0026620556 scopus 로고
    • The role of p34 kinases in the G1 to S-phase transition
    • Reed SI (1992). The role of p34 kinases in the G1 to S-phase transition. Annu Rev Cell Biol 8, 529-561.
    • (1992) Annu Rev Cell Biol , vol.8 , pp. 529-561
    • Reed, S.I.1
  • 58
    • 4344685444 scopus 로고    scopus 로고
    • Nutritional homeostasis in batch and steady-state culture of yeast
    • DOI 10.1091/mbc.E04-04-0306
    • Saldanha AJ, Brauer MJ, Botstein D (2004). Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15, 4089-4104. (Pubitemid 39122014)
    • (2004) Molecular Biology of the Cell , vol.15 , Issue.9 , pp. 4089-4104
    • Saldanha, A.J.1    Brauer, M.J.2    Botstein, D.3
  • 59
    • 47249087347 scopus 로고    scopus 로고
    • 1 phase cell cycle progression
    • Schieke SM, McCoy JP, Finkel T (2008). Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 7, 1782-1787. (Pubitemid 351988744)
    • (2008) Cell Cycle , vol.7 , Issue.12 , pp. 1782-1787
    • Schieke, S.M.1    McCoy Jr., J.P.2    Finkel, T.3
  • 61
    • 74949109026 scopus 로고    scopus 로고
    • Nutrition-minded cell cycle
    • Shiozaki K (2009). Nutrition-minded cell cycle. Sci Signal 2, pe74.
    • (2009) Sci Signal , vol.2
    • Shiozaki, K.1
  • 62
    • 77951081705 scopus 로고    scopus 로고
    • Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate
    • Silverman SJ et al. (2010). Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci USA 107, 6946-6951.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 6946-6951
    • Silverman, S.J.1
  • 63
    • 84861167247 scopus 로고    scopus 로고
    • Inference of sparse networks with unobserved variables. Application to gene regulatory networks
    • Slavov N (2010). Inference of sparse networks with unobserved variables. Application to gene regulatory networks. J Mach Learn Res 9, 757-764.
    • (2010) J Mach Learn Res , vol.9 , pp. 757-764
    • Slavov, N.1
  • 65
    • 79959199873 scopus 로고    scopus 로고
    • Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast
    • Slavov N, Botstein D (2011). Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol Biol Cell 22, 1997-2009.
    • (2011) Mol Biol Cell , vol.22 , pp. 1997-2009
    • Slavov, N.1    Botstein, D.2
  • 66
    • 63149129627 scopus 로고    scopus 로고
    • Correlation signature of the macroscopic states of the gene regulatory network in cancer
    • Slavov N, Dawson KA (2009). Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proc Natl Acad Sci USA 106, 4079-4084.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 4079-4084
    • Slavov, N.1    Dawson, K.A.2
  • 67
    • 82755168799 scopus 로고    scopus 로고
    • Metabolic cycling without cell division cycling in respiring yeast
    • Slavov N, Macinskas J, Caudy A, Botstein D (2011). Metabolic cycling without cell division cycling in respiring yeast. Proc Natl Acad Sci USA 108, 19090-19095.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 19090-19095
    • Slavov, N.1    Macinskas, J.2    Caudy, A.3    Botstein, D.4
  • 68
    • 0032127462 scopus 로고    scopus 로고
    • Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation
    • DOI 10.1093/emboj/17.13.3556
    • Smith A, Ward M, Garrett S (1998). Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 17, 3556-3564. (Pubitemid 28327374)
    • (1998) EMBO Journal , vol.17 , Issue.13 , pp. 3556-3564
    • Smith, A.1    Ward, M.P.2    Garrett, S.3
  • 70
    • 2942555282 scopus 로고    scopus 로고
    • Stochastic gene expression in fluctuating environments
    • DOI 10.1534/genetics.167.1.523
    • Thattai M, van Oudenaarden A (2004). Stochastic gene expression in fluctuating environments. Genetics 167, 523-530. (Pubitemid 38736407)
    • (2004) Genetics , vol.167 , Issue.1 , pp. 523-530
    • Thattai, M.1    Van Oudenaarden, A.2
  • 71
    • 27944487902 scopus 로고    scopus 로고
    • Cell biology: Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
    • DOI 10.1126/science.1120499
    • Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005). Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152-1158. (Pubitemid 41681736)
    • (2005) Science , vol.310 , Issue.5751 , pp. 1152-1158
    • Tu, B.P.1    Kudlicki, A.2    Rowicka, M.3    McKnight, S.L.4
  • 72
    • 79955076736 scopus 로고    scopus 로고
    • Two ubiquitin ligases, APC/C- Cdh1 and SKP1-CUL1-F (SCF)-β-TrCP, sequentially regulate glycolysis during the cell cycle
    • Tudzarova S, Colombo S, Stoeber K, Carcamo S, Williams G, Moncada S (2011). Two ubiquitin ligases, APC/C- Cdh1 and SKP1-CUL1-F (SCF)-β-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci USA 108, 5278-5283.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 5278-5283
    • Tudzarova, S.1    Colombo, S.2    Stoeber, K.3    Carcamo, S.4    Williams, G.5    Moncada, S.6
  • 73
    • 33846189368 scopus 로고    scopus 로고
    • Longevity and the stress response in Drosophila
    • DOI 10.1016/j.exger.2006.09.014, PII S0531556506002944
    • Vermeulen C, Loeschcke V (2007). Longevity and the stress response in Drosophila. Exp Gerontol 42, 153-159. (Pubitemid 46109562)
    • (2007) Experimental Gerontology , vol.42 , Issue.3 , pp. 153-159
    • Vermeulen, C.J.1    Loeschcke, V.2
  • 74
    • 0034255690 scopus 로고    scopus 로고
    • Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae
    • DOI 10.1016/S0378-1097(00)00240-8, PII S0378109700002408
    • Wang J, Liu W, Uno T, Tonozuka H, Mitsui K, Tsurugi K (2000). Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 189, 9-13 PMID: 10913858. (Pubitemid 30456239)
    • (2000) FEMS Microbiology Letters , vol.189 , Issue.1 , pp. 9-13
    • Wang, J.1    Liu, W.2    Uno, T.3    Tonozuka, H.4    Mitsui, K.5    Tsurugi, K.6
  • 76
    • 78649675624 scopus 로고    scopus 로고
    • Evaluating gene expression dynamics using pairwise RNA FISH data
    • Wyart M, Botstein D, Wingreen NS (2010). Evaluating gene expression dynamics using pairwise RNA FISH data. PLoS Comput Biol 6, e1000979.
    • (2010) PLoS Comput Biol , vol.6
    • Wyart, M.1    Botstein, D.2    Wingreen, N.S.3
  • 77
    • 48449104617 scopus 로고    scopus 로고
    • GOEAST: A web-based software toolkit for Gene Ontology enrichment analysis
    • Zheng Q, Wang X (2008). GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36, W358-W363.
    • (2008) Nucleic Acids Res , vol.36
    • Zheng, Q.1    Wang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.