-
1
-
-
60349104299
-
The spliceosome: design principles of a dynamic RNP machine.
-
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136(Pt 20):701-718.
-
(2009)
Cell
, vol.136
, Issue.PART 20
, pp. 701-718
-
-
Wahl, M.C.1
Will, C.L.2
Luhrmann, R.3
-
2
-
-
33745598322
-
The ever-growing world of small nuclear ribonucleoproteins.
-
eds. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
-
Tycowski KT, Kolev NG, Conrad NK, Fok V, Steitz JA. The ever-growing world of small nuclear ribonucleoproteins. In: Gesteland RF, Cech TR, Atkins JF, eds. The RNA World. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2006.
-
(2006)
The RNA World.
-
-
Tycowski, K.T.1
Kolev, N.G.2
Conrad, N.K.3
Fok, V.4
Steitz, J.A.5
Gesteland, R.F.6
Cech, T.R.7
Atkins, J.F.8
-
3
-
-
56549101959
-
Alternative isoform regulation in human tissue transcriptomes.
-
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
-
(2008)
Nature
, vol.456
, pp. 470-476
-
-
Wang, E.T.1
Sandberg, R.2
Luo, S.3
Khrebtukova, I.4
Zhang, L.5
Mayr, C.6
Kingsmore, S.F.7
Schroth, G.P.8
Burge, C.B.9
-
4
-
-
75849145292
-
Expansion of the eukaryotic proteome by alternative splicing.
-
Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463:457-463.
-
(2010)
Nature
, vol.463
, pp. 457-463
-
-
Nilsen, T.W.1
Graveley, B.R.2
-
5
-
-
0013394889
-
Mechanisms of alternative pre-messenger RNA splicing.
-
Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003, 72:291-336.
-
(2003)
Annu Rev Biochem
, vol.72
, pp. 291-336
-
-
Black, D.L.1
-
6
-
-
70350569286
-
Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches.
-
Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009, 10:741-754.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 741-754
-
-
Chen, M.1
Manley, J.L.2
-
8
-
-
77953030317
-
A rational nomenclature for serine/arginine-rich protein splicing factors SR proteins).
-
Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors SR proteins). Genes Dev 2010, 24:1073-1074.
-
(2010)
Genes Dev
, vol.24
, pp. 1073-1074
-
-
Manley, J.L.1
Krainer, A.R.2
-
9
-
-
0009361523
-
Splicing of adenovirus RNA in a cell-free transcription system.
-
Padgett RA, Hardy SF, Sharp PA. Splicing of adenovirus RNA in a cell-free transcription system. Proc Natl Acad Sci U S A 1983, 80:5230-5234.
-
(1983)
Proc Natl Acad Sci U S A
, vol.80
, pp. 5230-5234
-
-
Padgett, R.A.1
Hardy, S.F.2
Sharp, P.A.3
-
10
-
-
0021223245
-
Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro.
-
Krainer AR, Maniatis T, Ruskin B, Green MR. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 1984, 36:993-1005.
-
(1984)
Cell
, vol.36
, pp. 993-1005
-
-
Krainer, A.R.1
Maniatis, T.2
Ruskin, B.3
Green, M.R.4
-
11
-
-
0021026456
-
Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts.
-
Hernandez N, Keller W. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell 1983, 35:89-99.
-
(1983)
Cell
, vol.35
, pp. 89-99
-
-
Hernandez, N.1
Keller, W.2
-
12
-
-
0020522128
-
Human β-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei.
-
Green MR, Maniatis T, Melton DA. Human β-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 1983, 32:681-694.
-
(1983)
Cell
, vol.32
, pp. 681-694
-
-
Green, M.R.1
Maniatis, T.2
Melton, D.A.3
-
13
-
-
0022160149
-
RNP particles at splice junction sequences on Drosophila chorion transcripts.
-
Osheim YN, Miller OL, Jr, Beyer AL. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 1985, 43:143-151.
-
(1985)
Cell
, vol.43
, pp. 143-151
-
-
Osheim, Y.N.1
Miller Jr., O.L.2
Beyer, A.L.3
-
14
-
-
70349125488
-
Co-transcriptional splicing of constitutive and alternative exons.
-
Pandya-Jones A, Black DL. Co-transcriptional splicing of constitutive and alternative exons. RNA 2009, 15:1896-1908.
-
(2009)
RNA
, vol.15
, pp. 1896-1908
-
-
Pandya-Jones, A.1
Black, D.L.2
-
15
-
-
33748351186
-
Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.
-
Listerman I, Sapra AK, Neugebauer KM. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 2006, 13:815-822.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 815-822
-
-
Listerman, I.1
Sapra, A.K.2
Neugebauer, K.M.3
-
16
-
-
67650299463
-
Control of alternative splicing through siRNA-mediated transcriptional gene silencing.
-
Allo M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA, et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol 2009, 16:717-724.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 717-724
-
-
Allo, M.1
Buggiano, V.2
Fededa, J.P.3
Petrillo, E.4
Schor, I.5
de la Mata, M.6
Agirre, E.7
Plass, M.8
Eyras, E.9
Elela, S.A.10
-
17
-
-
30044441988
-
The human SWI/SNF subunit Brm is a regulator of alternative splicing.
-
Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2006, 13:22-29.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 22-29
-
-
Batsche, E.1
Yaniv, M.2
Muchardt, C.3
-
18
-
-
13244253805
-
Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERα and CAPERβ
-
Dowhan DH, Hong EP, Auboeuf D, Dennis AP, Wilson MM, Berget SM, O'Malley BW. Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERα and CAPERβ. Mol Cell 2005, 17:429-439.
-
(2005)
Mol Cell
, vol.17
, pp. 429-439
-
-
Dowhan, D.H.1
Hong, E.P.2
Auboeuf, D.3
Dennis, A.P.4
Wilson, M.M.5
Berget, S.M.6
O'Malley, B.W.7
-
19
-
-
0030761276
-
Functional association between promoter structure and transcript alternative splicing.
-
Cramer P, Pesce CG, Baralle FE, Kornblihtt AR. Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A 1997, 94:11456-11460.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 11456-11460
-
-
Cramer, P.1
Pesce, C.G.2
Baralle, F.E.3
Kornblihtt, A.R.4
-
20
-
-
0031037856
-
The C-terminal domain of RNA polymerase II couples mRNA processing to transcription.
-
McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997, 385:357-361.
-
(1997)
Nature
, vol.385
, pp. 357-361
-
-
McCracken, S.1
Fong, N.2
Yankulov, K.3
Ballantyne, S.4
Pan, G.5
Greenblatt, J.6
Patterson, S.D.7
Wickens, M.8
Bentley, D.L.9
-
21
-
-
65549147264
-
DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation.
-
Munoz MJ, Perez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano JJ, et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 2009, 137: 708-720.
-
(2009)
Cell
, vol.137
, pp. 708-720
-
-
Munoz, M.J.1
Perez Santangelo, M.S.2
Paronetto, M.P.3
de la Mata, M.4
Pelisch, F.5
Boireau, S.6
Glover-Cutter, K.7
Ben-Dov, C.8
Blaustein, M.9
Lozano, J.J.10
-
22
-
-
0141888375
-
A slow RNA polymerase II affects alternative splicing in vivo.
-
de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, Cramer P, Bentley D, Kornblihtt AR. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003, 12:525-532.
-
(2003)
Mol Cell
, vol.12
, pp. 525-532
-
-
de la Mata, M.1
Alonso, C.R.2
Kadener, S.3
Fededa, J.P.4
Blaustein, M.5
Pelisch, F.6
Cramer, P.7
Bentley, D.8
Kornblihtt, A.R.9
-
23
-
-
78649289872
-
Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.
-
Carrillo Oesterreich F, Preibisch S, Neugebauer KM. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 2010, 40:571-581.
-
(2010)
Mol Cell
, vol.40
, pp. 571-581
-
-
Carrillo Oesterreich, F.1
Preibisch, S.2
Neugebauer, K.M.3
-
24
-
-
33746630487
-
In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants.
-
Lacadie SA, Tardiff DF, Kadener S, Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 2006, 20:2055-2066.
-
(2006)
Genes Dev
, vol.20
, pp. 2055-2066
-
-
Lacadie, S.A.1
Tardiff, D.F.2
Kadener, S.3
Rosbash, M.4
-
25
-
-
73349116881
-
Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly.
-
Gunderson FQ, Johnson TL. Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 2009, 5:e1000682.
-
(2009)
PLoS Genet
, vol.5
-
-
Gunderson, F.Q.1
Johnson, T.L.2
-
26
-
-
78649303325
-
Splicing-dependent RNA polymerase pausing in yeast.
-
Alexander RD, Innocente SA, Barrass JD, Beggs JD. Splicing-dependent RNA polymerase pausing in yeast. Mol Cell 2010, 40:582-593.
-
(2010)
Mol Cell
, vol.40
, pp. 582-593
-
-
Alexander, R.D.1
Innocente, S.A.2
Barrass, J.D.3
Beggs, J.D.4
-
27
-
-
0024021747
-
Splice site selection, rate of splicing, and alternative splicing on nascent transcripts.
-
Beyer AL, Osheim YN. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 1988, 2:754-765.
-
(1988)
Genes Dev
, vol.2
, pp. 754-765
-
-
Beyer, A.L.1
Osheim, Y.N.2
-
28
-
-
0028589099
-
Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber.
-
Kiseleva E, Wurtz T, Visa N, Daneholt B. Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber. EMBO J 1994, 13:6052-6061.
-
(1994)
EMBO J
, vol.13
, pp. 6052-6061
-
-
Kiseleva, E.1
Wurtz, T.2
Visa, N.3
Daneholt, B.4
-
29
-
-
0021610721
-
Transcription-dependent localization of U1 and U2 small nuclear ribonucleoproteins at major sites of gene activity in polytene chromosomes.
-
Sass H, Pederson T. Transcription-dependent localization of U1 and U2 small nuclear ribonucleoproteins at major sites of gene activity in polytene chromosomes. J Mol Biol 1984, 180:911-926.
-
(1984)
J Mol Biol
, vol.180
, pp. 911-926
-
-
Sass, H.1
Pederson, T.2
-
30
-
-
0029807798
-
A protein of the SR family of splicing factors binds extensively to exonic Balbiani ring pre-mRNA and accompanies the RNA from the gene to the nuclear pore.
-
Alzhanova-Ericsson AT, Sun X, Visa N, Kiseleva E, Wurtz T, Daneholt B. A protein of the SR family of splicing factors binds extensively to exonic Balbiani ring pre-mRNA and accompanies the RNA from the gene to the nuclear pore. Genes Dev 1996, 10:2881-2893.
-
(1996)
Genes Dev
, vol.10
, pp. 2881-2893
-
-
Alzhanova-Ericsson, A.T.1
Sun, X.2
Visa, N.3
Kiseleva, E.4
Wurtz, T.5
Daneholt, B.6
-
31
-
-
0030909002
-
Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity.
-
Zeng C, Kim E, Warren SL, Berget SM. Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity. EMBO J 1997, 16:1401-1412.
-
(1997)
EMBO J
, vol.16
, pp. 1401-1412
-
-
Zeng, C.1
Kim, E.2
Warren, S.L.3
Berget, S.M.4
-
32
-
-
0030959371
-
Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription.
-
Neugebauer KM, Roth MB. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes Dev 1997, 11:1148-1159.
-
(1997)
Genes Dev
, vol.11
, pp. 1148-1159
-
-
Neugebauer, K.M.1
Roth, M.B.2
-
33
-
-
1842376906
-
The dynamics of a pre-mRNA splicing factor in living cells.
-
Misteli T, Caceres JF, Spector DL. The dynamics of a pre-mRNA splicing factor in living cells. Nature 1997, 387:523-527.
-
(1997)
Nature
, vol.387
, pp. 523-527
-
-
Misteli, T.1
Caceres, J.F.2
Spector, D.L.3
-
34
-
-
0018903730
-
Features of in vitro puffing and RNA synthesis in polytene chromosomes of Chironomus.
-
Sass H. Features of in vitro puffing and RNA synthesis in polytene chromosomes of Chironomus. Chromosoma 1980, 78:33-78.
-
(1980)
Chromosoma
, vol.78
, pp. 33-78
-
-
Sass, H.1
-
35
-
-
0032167935
-
Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron.
-
Bauren G, Belikov S, Wieslander L. Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev 1998, 12:2759-2769.
-
(1998)
Genes Dev
, vol.12
, pp. 2759-2769
-
-
Bauren, G.1
Belikov, S.2
Wieslander, L.3
-
36
-
-
0029902511
-
The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns.
-
Wetterberg I, Bauren G, Wieslander L. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 1996, 2:641-651.
-
(1996)
RNA
, vol.2
, pp. 641-651
-
-
Wetterberg, I.1
Bauren, G.2
Wieslander, L.3
-
37
-
-
0028837312
-
The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced.
-
Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995, 9:184-190.
-
(1995)
Nat Genet
, vol.9
, pp. 184-190
-
-
Tennyson, C.N.1
Klamut, H.J.2
Worton, R.G.3
-
38
-
-
0028090567
-
Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing.
-
Wuarin J, Schibler U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol Cell Biol 1994, 14:7219-7225.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 7219-7225
-
-
Wuarin, J.1
Schibler, U.2
-
39
-
-
77951200179
-
First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal.
-
de la Mata M, Lafaille C, Kornblihtt AR. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 2010, 16:904-912.
-
(2010)
RNA
, vol.16
, pp. 904-912
-
-
de la Mata, M.1
Lafaille, C.2
Kornblihtt, A.R.3
-
40
-
-
33749056769
-
An RNA map predicting Nova-dependent splicing regulation.
-
Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB. An RNA map predicting Nova-dependent splicing regulation. Nature 2006, 444:580-586.
-
(2006)
Nature
, vol.444
, pp. 580-586
-
-
Ule, J.1
Stefani, G.2
Mele, A.3
Ruggiu, M.4
Wang, X.5
Taneri, B.6
Gaasterland, T.7
Blencowe, B.J.8
Darnell, R.B.9
-
41
-
-
0029011873
-
Purification of P-TEFb, a transcription factor required for the transition into productive elongation.
-
Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 1995, 270:12335-12338.
-
(1995)
J Biol Chem
, vol.270
, pp. 12335-12338
-
-
Marshall, N.F.1
Price, D.H.2
-
42
-
-
70350754211
-
Rates of in situ transcription and splicing in large human genes.
-
Singh J, Padgett RA. Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009, 16:1128-1133.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 1128-1133
-
-
Singh, J.1
Padgett, R.A.2
-
43
-
-
77957747157
-
The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells.
-
Huranova M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanek D. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol 2010, 191:75-86.
-
(2010)
J Cell Biol
, vol.191
, pp. 75-86
-
-
Huranova, M.1
Ivani, I.2
Benda, A.3
Poser, I.4
Brody, Y.5
Hof, M.6
Shav-Tal, Y.7
Neugebauer, K.M.8
Stanek, D.9
-
44
-
-
0034724953
-
Architecture of RNA polymerase II and implications for the transcription mechanism.
-
Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 2000, 288:640-649.
-
(2000)
Science
, vol.288
, pp. 640-649
-
-
Cramer, P.1
Bushnell, D.A.2
Fu, J.3
Gnatt, A.L.4
Maier-Davis, B.5
Thompson, N.E.6
Burgess, R.R.7
Edwards, A.M.8
David, P.R.9
Kornberg, R.D.10
-
45
-
-
0009370184
-
A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II.
-
Corden JL, Cadena DL, Ahearn JM, Jr, Dahmus ME. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc Natl Acad Sci U S A 1985, 82:7934-7938.
-
(1985)
Proc Natl Acad Sci U S A
, vol.82
, pp. 7934-7938
-
-
Corden, J.L.1
Cadena, D.L.2
Ahearn Jr., J.M.3
Dahmus, M.E.4
-
46
-
-
36248953263
-
Pin1 modulates RNA polymerase II activity during the transcription cycle.
-
Xu YX, Manley JL. Pin1 modulates RNA polymerase II activity during the transcription cycle. Genes Dev 2007, 21:2950-2962.
-
(2007)
Genes Dev
, vol.21
, pp. 2950-2962
-
-
Xu, Y.X.1
Manley, J.L.2
-
47
-
-
15544376116
-
Key features of the interaction between Pcf11 CID and RNA polymerase II CTD.
-
Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, Taylor IA, Ramos A. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Nat Struct Mol Biol 2005, 12:144-151.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 144-151
-
-
Noble, C.G.1
Hollingworth, D.2
Martin, S.R.3
Ennis-Adeniran, V.4
Smerdon, S.J.5
Kelly, G.6
Taylor, I.A.7
Ramos, A.8
-
48
-
-
0034307008
-
Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.
-
Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 2000, 14:2452-2460.
-
(2000)
Genes Dev
, vol.14
, pp. 2452-2460
-
-
Komarnitsky, P.1
Cho, E.J.2
Buratowski, S.3
-
49
-
-
0027289130
-
RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc.
-
Kelly WG, Dahmus ME, Hart GW. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 1993, 268:10416-10424.
-
(1993)
J Biol Chem
, vol.268
, pp. 10416-10424
-
-
Kelly, W.G.1
Dahmus, M.E.2
Hart, G.W.3
-
50
-
-
37249015899
-
Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7.
-
Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007, 318:1780-1782.
-
(2007)
Science
, vol.318
, pp. 1780-1782
-
-
Chapman, R.D.1
Heidemann, M.2
Albert, T.K.3
Mailhammer, R.4
Flatley, A.5
Meisterernst, M.6
Kremmer, E.7
Eick, D.8
-
51
-
-
0033153543
-
RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo.
-
Misteli T, Spector DL. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 1999, 3:697-705.
-
(1999)
Mol Cell
, vol.3
, pp. 697-705
-
-
Misteli, T.1
Spector, D.L.2
-
52
-
-
0034637472
-
Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription.
-
Meininghaus M, Chapman RD, Horndasch M, Eick D. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J Biol Chem 2000, 275:24375-24382.
-
(2000)
J Biol Chem
, vol.275
, pp. 24375-24382
-
-
Meininghaus, M.1
Chapman, R.D.2
Horndasch, M.3
Eick, D.4
-
53
-
-
0033563098
-
Phosphorylated RNA polymerase II stimulates pre-mRNA splicing.
-
Hirose Y, Tacke R, Manley JL. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 1999, 13:1234-1239.
-
(1999)
Genes Dev
, vol.13
, pp. 1234-1239
-
-
Hirose, Y.1
Tacke, R.2
Manley, J.L.3
-
54
-
-
64749097017
-
The carboxyl-terminal domain of RNA polymerase II is not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase.
-
Natalizio BJ, Robson-Dixon ND, Garcia-Blanco MA. The carboxyl-terminal domain of RNA polymerase II is not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase. J Biol Chem 2009, 284:8692-8702.
-
(2009)
J Biol Chem
, vol.284
, pp. 8692-8702
-
-
Natalizio, B.J.1
Robson-Dixon, N.D.2
Garcia-Blanco, M.A.3
-
55
-
-
0022974809
-
Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA.
-
Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 1986, 47:555-565.
-
(1986)
Cell
, vol.47
, pp. 555-565
-
-
Aebi, M.1
Hornig, H.2
Padgett, R.A.3
Reiser, J.4
Weissmann, C.5
-
56
-
-
0025245371
-
Effect of 5′ splice site mutations on splicing of the preceding intron.
-
Talerico M, Berget SM. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol Cell Biol 1990, 10:6299-6305.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 6299-6305
-
-
Talerico, M.1
Berget, S.M.2
-
57
-
-
0242384920
-
Transcriptional activators control splicing and 3′-end cleavage levels.
-
Rosonina E, Bakowski MA, McCracken S, Blencowe BJ. Transcriptional activators control splicing and 3′-end cleavage levels. J Biol Chem 2003, 278:43034-43040.
-
(2003)
J Biol Chem
, vol.278
, pp. 43034-43040
-
-
Rosonina, E.1
Bakowski, M.A.2
McCracken, S.3
Blencowe, B.J.4
-
58
-
-
22544472117
-
Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo.
-
Rosonina E, Ip JY, Calarco JA, Bakowski MA, Emili A, McCracken S, Tucker P, Ingles CJ, Blencowe BJ. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol Cell Biol 2005, 25:6734-6746.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 6734-6746
-
-
Rosonina, E.1
Ip, J.Y.2
Calarco, J.A.3
Bakowski, M.A.4
Emili, A.5
McCracken, S.6
Tucker, P.7
Ingles, C.J.8
Blencowe, B.J.9
-
59
-
-
0028093378
-
Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex.
-
Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 1994, 370:477-481.
-
(1994)
Nature
, vol.370
, pp. 477-481
-
-
Kwon, H.1
Imbalzano, A.N.2
Khavari, P.A.3
Kingston, R.E.4
Green, M.R.5
-
60
-
-
0033215511
-
Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences.
-
Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 1999, 99:35-46.
-
(1999)
Cell
, vol.99
, pp. 35-46
-
-
Pal-Bhadra, M.1
Bhadra, U.2
Birchler, J.A.3
-
61
-
-
0033521652
-
Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans.
-
Mette MF, van der Winden J, Matzke MA, Matzke AJ. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 1999, 18:241-248.
-
(1999)
EMBO J
, vol.18
, pp. 241-248
-
-
Mette, M.F.1
van der Winden, J.2
Matzke, M.A.3
Matzke, A.J.4
-
62
-
-
15444375305
-
Transcriptional silencing of a transgene by RNAi in the soma of C. elegans.
-
Grishok A, Sinskey JL, Sharp PA. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev 2005, 19:683-696.
-
(2005)
Genes Dev
, vol.19
, pp. 683-696
-
-
Grishok, A.1
Sinskey, J.L.2
Sharp, P.A.3
-
63
-
-
0037072660
-
Small RNAs correspond to centromere heterochromatic repeats.
-
Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science 2002, 297:1831.
-
(2002)
Science
, vol.297
, pp. 1831
-
-
Reinhart, B.J.1
Bartel, D.P.2
-
64
-
-
0034596989
-
Transcriptional silencing and promoter methylation triggered by double-stranded RNA.
-
Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 2000, 19:5194-5201.
-
(2000)
EMBO J
, vol.19
, pp. 5194-5201
-
-
Mette, M.F.1
Aufsatz, W.2
van der Winden, J.3
Matzke, M.A.4
Matzke, A.J.5
-
65
-
-
0942279615
-
Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery.
-
Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 2004, 303:669-672.
-
(2004)
Science
, vol.303
, pp. 669-672
-
-
Pal-Bhadra, M.1
Leibovitch, B.A.2
Gandhi, S.G.3
Rao, M.4
Bhadra, U.5
Birchler, J.A.6
Elgin, S.C.7
-
66
-
-
0037072661
-
Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.
-
Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002, 297:1833-1837.
-
(2002)
Science
, vol.297
, pp. 1833-1837
-
-
Volpe, T.A.1
Kidner, C.2
Hall, I.M.3
Teng, G.4
Grewal, S.I.5
Martienssen, R.A.6
-
67
-
-
63149192174
-
Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing.
-
Schor IE, Rascovan N, Pelisch F, Allo M, Kornblihtt AR. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci U S A 2009, 106:4325-4330.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 4325-4330
-
-
Schor, I.E.1
Rascovan, N.2
Pelisch, F.3
Allo, M.4
Kornblihtt, A.R.5
-
68
-
-
0035912224
-
A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels.
-
Xie J, Black DL. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 2001, 410:936-939.
-
(2001)
Nature
, vol.410
, pp. 936-939
-
-
Xie, J.1
Black, D.L.2
-
69
-
-
39749145198
-
Dynamic regulation of nucleosome positioning in the human genome.
-
Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132:887-898.
-
(2008)
Cell
, vol.132
, pp. 887-898
-
-
Schones, D.E.1
Cui, K.2
Cuddapah, S.3
Roh, T.Y.4
Barski, A.5
Wang, Z.6
Wei, G.7
Zhao, K.8
-
70
-
-
70350013550
-
Biased chromatin signatures around polyadenylation sites and exons.
-
Spies N, Nielsen CB, Padgett RA, Burge CB. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 2009, 36:245-254.
-
(2009)
Mol Cell
, vol.36
, pp. 245-254
-
-
Spies, N.1
Nielsen, C.B.2
Padgett, R.A.3
Burge, C.B.4
-
71
-
-
69949132191
-
Chromatin organization marks exon-intron structure.
-
Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 2009, 16:990-995.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 990-995
-
-
Schwartz, S.1
Meshorer, E.2
Ast, G.3
-
72
-
-
70349333201
-
Nucleosomes are well positioned in exons and carry characteristic histone modifications.
-
Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 2009, 19:1732-1741.
-
(2009)
Genome Res
, vol.19
, pp. 1732-1741
-
-
Andersson, R.1
Enroth, S.2
Rada-Iglesias, A.3
Wadelius, C.4
Komorowski, J.5
-
73
-
-
77952581343
-
The organization of nucleosomes around splice sites.
-
Chen W, Luo L, Zhang L. The organization of nucleosomes around splice sites. Nucleic Acids Res 2010, 38:2788-2798.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 2788-2798
-
-
Chen, W.1
Luo, L.2
Zhang, L.3
-
74
-
-
73449092184
-
Discovery and annotation of functional chromatin signatures in the human genome.
-
Hon G, Wang W, Ren B. Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput Biol 2009, 5:e1000566.
-
(2009)
PLoS Comput Biol
, vol.5
-
-
Hon, G.1
Wang, W.2
Ren, B.3
-
75
-
-
70350235050
-
Nucleosomes are preferentially positioned at exons in somatic and sperm cells.
-
Nahkuri S, Taft RJ, Mattick JS. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 2009, 8:3420-3424.
-
(2009)
Cell Cycle
, vol.8
, pp. 3420-3424
-
-
Nahkuri, S.1
Taft, R.J.2
Mattick, J.S.3
-
76
-
-
69949124307
-
Nucleosome positioning as a determinant of exon recognition.
-
Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcarcel J, Guigo R. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 2009, 16:996-1001.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 996-1001
-
-
Tilgner, H.1
Nikolaou, C.2
Althammer, S.3
Sammeth, M.4
Beato, M.5
Valcarcel, J.6
Guigo, R.7
-
77
-
-
78649836342
-
Reciprocal intronic and exonic histone modification regions in humans.
-
Huff JT, Plocik AM, Guthrie C, Yamamoto KR. Reciprocal intronic and exonic histone modification regions in humans. Nat Struct Mol Biol 2010, 17:1495-1499.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1495-1499
-
-
Huff, J.T.1
Plocik, A.M.2
Guthrie, C.3
Yamamoto, K.R.4
-
78
-
-
36249027156
-
Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing.
-
Sims RJ, 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 2007, 28:665-676.
-
(2007)
Mol Cell
, vol.28
, pp. 665-676
-
-
Sims, R.J.1
Millhouse, S.2
Chen, C.F.3
Lewis, B.A.4
Erdjument-Bromage, H.5
Tempst, P.6
Manley, J.L.7
Reinberg, D.8
-
79
-
-
77149175671
-
Regulation of alternative splicing by histone modifications.
-
Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science 2010, 327:996-1000.
-
(2010)
Science
, vol.327
, pp. 996-1000
-
-
Luco, R.F.1
Pan, Q.2
Tominaga, K.3
Blencowe, B.J.4
Pereira-Smith, O.M.5
Misteli, T.6
-
80
-
-
27944491171
-
In vitro coupled transcription splicing.
-
Natalizio BJ, Garcia-Blanco MA. In vitro coupled transcription splicing. Methods 2005, 37:314-322.
-
(2005)
Methods
, vol.37
, pp. 314-322
-
-
Natalizio, B.J.1
Garcia-Blanco, M.A.2
-
81
-
-
33745220323
-
Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns.
-
Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 2006, 4:e147.
-
(2006)
PLoS Biol
, vol.4
-
-
Hicks, M.J.1
Yang, C.R.2
Kotlajich, M.V.3
Hertel, K.J.4
-
83
-
-
34548367537
-
Concurrent splicing and transcription are not sufficient to enhance splicing efficiency.
-
Lazarev D, Manley JL. Concurrent splicing and transcription are not sufficient to enhance splicing efficiency. RNA 2007, 13:1546-1557.
-
(2007)
RNA
, vol.13
, pp. 1546-1557
-
-
Lazarev, D.1
Manley, J.L.2
-
84
-
-
67149138094
-
SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing.
-
Tyagi A, Ryme J, Brodin D, Ostlund Farrants AK, Visa N. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 2009, 5:e1000470.
-
(2009)
PLoS Genet
, vol.5
-
-
Tyagi, A.1
Ryme, J.2
Brodin, D.3
Ostlund Farrants, A.K.4
Visa, N.5
-
86
-
-
37249063572
-
Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression.
-
Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 2007, 318:1777-1779.
-
(2007)
Science
, vol.318
, pp. 1777-1779
-
-
Egloff, S.1
O'Reilly, D.2
Chapman, R.D.3
Taylor, A.4
Tanzhaus, K.5
Pitts, L.6
Eick, D.7
Murphy, S.8
-
87
-
-
0026731557
-
Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II.
-
Lu H, Zawel L, Fisher L, Egly JM, Reinberg D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 1992, 358:641-645.
-
(1992)
Nature
, vol.358
, pp. 641-645
-
-
Lu, H.1
Zawel, L.2
Fisher, L.3
Egly, J.M.4
Reinberg, D.5
-
88
-
-
15644372864
-
5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II.
-
McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, Hessel A, Foster S, Shuman S, Bentley DL. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 1997, 11:3306-3318.
-
(1997)
Genes Dev
, vol.11
, pp. 3306-3318
-
-
McCracken, S.1
Fong, N.2
Rosonina, E.3
Yankulov, K.4
Brothers, G.5
Siderovski, D.6
Hessel, A.7
Foster, S.8
Shuman, S.9
Bentley, D.L.10
-
89
-
-
0032540231
-
The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II.
-
Ho CK, Sriskanda V, McCracken S, Bentley D, Schwer B, Shuman S. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 1998, 273:9577-9585.
-
(1998)
J Biol Chem
, vol.273
, pp. 9577-9585
-
-
Ho, C.K.1
Sriskanda, V.2
McCracken, S.3
Bentley, D.4
Schwer, B.5
Shuman, S.6
-
90
-
-
0031453408
-
mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain.
-
Cho EJ, Takagi T, Moore CR, Buratowski S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 1997, 11:3319-3326.
-
(1997)
Genes Dev
, vol.11
, pp. 3319-3326
-
-
Cho, E.J.1
Takagi, T.2
Moore, C.R.3
Buratowski, S.4
-
91
-
-
0034307172
-
Dynamic association of capping enzymes with transcribing RNA polymerase II.
-
Schroeder SC, Schwer B, Shuman S, Bentley D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 2000, 14:2435-2440.
-
(2000)
Genes Dev
, vol.14
, pp. 2435-2440
-
-
Schroeder, S.C.1
Schwer, B.2
Shuman, S.3
Bentley, D.4
-
92
-
-
0031022189
-
Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA.
-
Kim E, Du L, Bregman DB, Warren SL. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol 1997, 136:19-28.
-
(1997)
J Cell Biol
, vol.136
, pp. 19-28
-
-
Kim, E.1
Du, L.2
Bregman, D.B.3
Warren, S.L.4
-
93
-
-
0037088691
-
A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly.
-
Robert F, Blanchette M, Maes O, Chabot B, Coulombe B. A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J Biol Chem 2002, 277:9302-9306.
-
(2002)
J Biol Chem
, vol.277
, pp. 9302-9306
-
-
Robert, F.1
Blanchette, M.2
Maes, O.3
Chabot, B.4
Coulombe, B.5
-
94
-
-
0030789797
-
A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain.
-
Tanner S, Stagljar I, Georgiev O, Schaffner W, Bourquin JP. A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain. Biol Chem 1997, 378:565-571.
-
(1997)
Biol Chem
, vol.378
, pp. 565-571
-
-
Tanner, S.1
Stagljar, I.2
Georgiev, O.3
Schaffner, W.4
Bourquin, J.P.5
-
95
-
-
0030844256
-
A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II.
-
Bourquin JP, Stagljar I, Meier P, Moosmann P, Silke J, Baechi T, Georgiev O, Schaffner W. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Res 1997, 25:2055-2061.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 2055-2061
-
-
Bourquin, J.P.1
Stagljar, I.2
Meier, P.3
Moosmann, P.4
Silke, J.5
Baechi, T.6
Georgiev, O.7
Schaffner, W.8
-
96
-
-
1542334001
-
Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing.
-
Ahn SH, Kim M, Buratowski S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 2004, 13:67-76.
-
(2004)
Mol Cell
, vol.13
, pp. 67-76
-
-
Ahn, S.H.1
Kim, M.2
Buratowski, S.3
-
97
-
-
0029959435
-
The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins.
-
Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, Corden JL. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A 1996, 93:6975-6980.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, pp. 6975-6980
-
-
Yuryev, A.1
Patturajan, M.2
Litingtung, Y.3
Joshi, R.V.4
Gentile, C.5
Gebara, M.6
Corden, J.L.7
-
98
-
-
33750596100
-
RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20.
-
de la Mata M, Kornblihtt AR. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006, 13:973-980.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 973-980
-
-
de la Mata, M.1
Kornblihtt, A.R.2
-
99
-
-
64749099643
-
SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo.
-
Sapra AK, Anko ML, Grishina I, Lorenz M, Pabis M, Poser I, Rollins J, Weiland EM, Neugebauer KM. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 2009, 34:179-190.
-
(2009)
Mol Cell
, vol.34
, pp. 179-190
-
-
Sapra, A.K.1
Anko, M.L.2
Grishina, I.3
Lorenz, M.4
Pabis, M.5
Poser, I.6
Rollins, J.7
Weiland, E.M.8
Neugebauer, K.M.9
-
100
-
-
34250363024
-
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing.
-
Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 2007, 26:867-881.
-
(2007)
Mol Cell
, vol.26
, pp. 867-881
-
-
Das, R.1
Yu, J.2
Zhang, Z.3
Gygi, M.P.4
Krainer, A.R.5
Gygi, S.P.6
Reed, R.7
-
101
-
-
7044272280
-
Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses.
-
Mili S, Steitz JA. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 2004, 10:1692-1694.
-
(2004)
RNA
, vol.10
, pp. 1692-1694
-
-
Mili, S.1
Steitz, J.A.2
-
102
-
-
0037107547
-
On the importance of being co-transcriptional.
-
Neugebauer KM. On the importance of being co-transcriptional. J Cell Sci 2002, 115:3865-3871.
-
(2002)
J Cell Sci
, vol.115
, pp. 3865-3871
-
-
Neugebauer, K.M.1
-
103
-
-
0032873673
-
Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing.
-
Chew SL, Liu HX, Mayeda A, Krainer AR. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing. Proc Natl Acad Sci U S A 1999, 96:10655-10660.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 10655-10660
-
-
Chew, S.L.1
Liu, H.X.2
Mayeda, A.3
Krainer, A.R.4
-
104
-
-
0031468240
-
Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro.
-
Cao W, Jamison SF, Garcia-Blanco MA. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA 1997, 3:1456-1467.
-
(1997)
RNA
, vol.3
, pp. 1456-1467
-
-
Cao, W.1
Jamison, S.F.2
Garcia-Blanco, M.A.3
-
105
-
-
0026473846
-
Multiple activities of the human splicing factor ASF.
-
Harper JE, Manley JL. Multiple activities of the human splicing factor ASF. Gene Expr 1992, 2:19-29.
-
(1992)
Gene Expr
, vol.2
, pp. 19-29
-
-
Harper, J.E.1
Manley, J.L.2
-
106
-
-
19944427655
-
ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle.
-
Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR, Jr., Ye Z, Liu F, et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 2005, 120:59-72.
-
(2005)
Cell
, vol.120
, pp. 59-72
-
-
Xu, X.1
Yang, D.2
Ding, J.H.3
Wang, W.4
Chu, P.H.5
Dalton, N.D.6
Wang, H.Y.7
Bermingham Jr., J.R.8
Ye, Z.9
Liu, F.10
-
107
-
-
49449116959
-
The splicing factor SC35 has an active role in transcriptional elongation.
-
Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 2008, 15:819-826.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 819-826
-
-
Lin, S.1
Coutinho-Mansfield, G.2
Wang, D.3
Pandit, S.4
Fu, X.D.5
-
108
-
-
33846659953
-
Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters.
-
Kwon YS, Garcia-Bassets I, Hutt KR, Cheng CS, Jin M, Liu D, Benner C, Wang D, Ye Z, Bibikova M, et al. Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters. Proc Natl Acad Sci U S A 2007, 104:4852-4857.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 4852-4857
-
-
Kwon, Y.S.1
Garcia-Bassets, I.2
Hutt, K.R.3
Cheng, C.S.4
Jin, M.5
Liu, D.6
Benner, C.7
Wang, D.8
Ye, Z.9
Bibikova, M.10
-
109
-
-
0022516779
-
A role for exon sequences and splice-site proximity in splice-site selection.
-
Reed R, Maniatis T. A role for exon sequences and splice-site proximity in splice-site selection. Cell 1986, 46:681-690.
-
(1986)
Cell
, vol.46
, pp. 681-690
-
-
Reed, R.1
Maniatis, T.2
-
110
-
-
0028895417
-
Exon recognition in vertebrate splicing.
-
Berget SM. Exon recognition in vertebrate splicing. J Biol Chem 1995, 270:2411-2414.
-
(1995)
J Biol Chem
, vol.270
, pp. 2411-2414
-
-
Berget, S.M.1
-
111
-
-
0029737855
-
A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site.
-
Lewis JD, Izaurralde E, Jarmolowski A, McGuigan C, Mattaj IW. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev 1996, 10:1683-1698.
-
(1996)
Genes Dev
, vol.10
, pp. 1683-1698
-
-
Lewis, J.D.1
Izaurralde, E.2
Jarmolowski, A.3
McGuigan, C.4
Mattaj, I.W.5
-
112
-
-
33845902048
-
Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease.
-
Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 2006, 444:953-956.
-
(2006)
Nature
, vol.444
, pp. 953-956
-
-
Mandel, C.R.1
Kaneko, S.2
Zhang, H.3
Gebauer, D.4
Vethantham, V.5
Manley, J.L.6
Tong, L.7
-
113
-
-
77953284100
-
Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation.
-
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 2010, 38:2757-2774.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 2757-2774
-
-
Millevoi, S.1
Vagner, S.2
-
114
-
-
42449084129
-
Protein factors in pre-mRNA 3′-end processing.
-
Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 2008, 65:1099-1122.
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 1099-1122
-
-
Mandel, C.R.1
Bai, Y.2
Tong, L.3
-
115
-
-
0025935848
-
Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns.
-
Niwa M, Berget SM. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev 1991, 5:2086-2095.
-
(1991)
Genes Dev
, vol.5
, pp. 2086-2095
-
-
Niwa, M.1
Berget, S.M.2
-
116
-
-
0033105008
-
Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II.
-
Dye MJ, Proudfoot NJ. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol Cell 1999, 3:371-378.
-
(1999)
Mol Cell
, vol.3
, pp. 371-378
-
-
Dye, M.J.1
Proudfoot, N.J.2
-
117
-
-
0033000782
-
Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal.
-
Cooke C, Hans H, Alwine JC. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal. Mol Cell Biol 1999, 19:4971-4979.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 4971-4979
-
-
Cooke, C.1
Hans, H.2
Alwine, J.C.3
-
118
-
-
28444454062
-
The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation.
-
Rigo F, Kazerouninia A, Nag A, Martinson HG. The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation. Mol Cell 2005, 20:733-745.
-
(2005)
Mol Cell
, vol.20
, pp. 733-745
-
-
Rigo, F.1
Kazerouninia, A.2
Nag, A.3
Martinson, H.G.4
-
119
-
-
0027471377
-
The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA.
-
Boelens WC, Jansen EJ, van Venrooij WJ, Stripecke R, Mattaj IW, Gunderson SI. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 1993, 72:881-892.
-
(1993)
Cell
, vol.72
, pp. 881-892
-
-
Boelens, W.C.1
Jansen, E.J.2
van Venrooij, W.J.3
Stripecke, R.4
Mattaj, I.W.5
Gunderson, S.I.6
-
120
-
-
0027453554
-
A complex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation.
-
van Gelder CW, Gunderson SI, Jansen EJ, Boelens WC, Polycarpou-Schwarz M, Mattaj IW, van Venrooij WJ. A complex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. EMBO J 1993, 12: 5191-5200.
-
(1993)
EMBO J
, vol.12
, pp. 5191-5200
-
-
van Gelder, C.W.1
Gunderson, S.I.2
Jansen, E.J.3
Boelens, W.C.4
Polycarpou-Schwarz, M.5
Mattaj, I.W.6
van Venrooij, W.J.7
-
121
-
-
0031004560
-
Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation.
-
Gunderson SI, Vagner S, Polycarpou-Schwarz M, Mattaj IW. Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev 1997, 11:761-773.
-
(1997)
Genes Dev
, vol.11
, pp. 761-773
-
-
Gunderson, S.I.1
Vagner, S.2
Polycarpou-Schwarz, M.3
Mattaj, I.W.4
-
122
-
-
33745944934
-
Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing.
-
Kyburz A, Friedlein A, Langen H, Keller W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol Cell 2006, 23:195-205.
-
(2006)
Mol Cell
, vol.23
, pp. 195-205
-
-
Kyburz, A.1
Friedlein, A.2
Langen, H.3
Keller, W.4
-
123
-
-
0142209394
-
Association of polyadenylation cleavage factor I with U1 snRNP.
-
Awasthi S, Alwine JC. Association of polyadenylation cleavage factor I with U1 snRNP. RNA 2003, 9:1400-1409.
-
(2003)
RNA
, vol.9
, pp. 1400-1409
-
-
Awasthi, S.1
Alwine, J.C.2
-
124
-
-
0030024350
-
Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro.
-
Lutz CS, Murthy KG, Schek N, O'Connor JP, Manley JL, Alwine JC. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev 1996, 10:325-337.
-
(1996)
Genes Dev
, vol.10
, pp. 325-337
-
-
Lutz, C.S.1
Murthy, K.G.2
Schek, N.3
O'Connor, J.P.4
Manley, J.L.5
Alwine, J.C.6
-
125
-
-
0036132667
-
SRm160 splicing coactivator promotes transcript 3′-end cleavage.
-
McCracken S, Lambermon M, Blencowe BJ. SRm160 splicing coactivator promotes transcript 3′-end cleavage. Mol Cell Biol 2002, 22:148-160.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 148-160
-
-
McCracken, S.1
Lambermon, M.2
Blencowe, B.J.3
-
126
-
-
0034008058
-
The carboxyl terminus of vertebrate poly(A) polymerase interacts with U2AF 65 to couple 3′-end processing and splicing.
-
Vagner S, Vagner C, Mattaj IW. The carboxyl terminus of vertebrate poly(A) polymerase interacts with U2AF 65 to couple 3′-end processing and splicing. Genes Dev 2000, 14:403-413.
-
(2000)
Genes Dev
, vol.14
, pp. 403-413
-
-
Vagner, S.1
Vagner, C.2
Mattaj, I.W.3
-
127
-
-
33750200773
-
An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries.
-
Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S. An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries. EMBO J 2006, 25:4854-4864.
-
(2006)
EMBO J
, vol.25
, pp. 4854-4864
-
-
Millevoi, S.1
Loulergue, C.2
Dettwiler, S.3
Karaa, S.Z.4
Keller, W.5
Antoniou, M.6
Vagner, S.7
-
128
-
-
77958018260
-
Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex.
-
Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010, 467:729-733.
-
(2010)
Nature
, vol.467
, pp. 729-733
-
-
Xiang, K.1
Nagaike, T.2
Xiang, S.3
Kilic, T.4
Beh, M.M.5
Manley, J.L.6
Tong, L.7
-
129
-
-
38049077956
-
Visualizing the splicing of single pre-mRNA molecules in whole cell extract.
-
Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ. Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 2008, 14:170-179.
-
(2008)
RNA
, vol.14
, pp. 170-179
-
-
Crawford, D.J.1
Hoskins, A.A.2
Friedman, L.J.3
Gelles, J.4
Moore, M.J.5
-
130
-
-
77950516144
-
Conformational dynamics of single pre-mRNA molecules during in vitro splicing.
-
Abelson J, Blanco M, Ditzler MA, Fuller F, Aravamudhan P, Wood M, Villa T, Ryan DE, Pleiss JA, Maeder C, et al. Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat Struct Mol Biol 2010, 17:504-512.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 504-512
-
-
Abelson, J.1
Blanco, M.2
Ditzler, M.A.3
Fuller, F.4
Aravamudhan, P.5
Wood, M.6
Villa, T.7
Ryan, D.E.8
Pleiss, J.A.9
Maeder, C.10
-
131
-
-
77649270851
-
Detecting the conformation of individual proteins in live cells.
-
Sakon JJ, Weninger KR. Detecting the conformation of individual proteins in live cells. Nat Methods 2010, 7:203-205.
-
(2010)
Nat Methods
, vol.7
, pp. 203-205
-
-
Sakon, J.J.1
Weninger, K.R.2
|