메뉴 건너뛰기




Volumn 53, Issue 2, 2012, Pages 248-272

Learning Bayesian network classifiers by risk minimization

Author keywords

Bayesian networks; Classification; Probabilistic graphical models; Structure learning

Indexed keywords

BAYESIAN NETWORK CLASSIFIERS; BAYESIAN NETWORKS (BNS); CLASSIFICATION ACCURACY; CLASSIFICATION TREES; CONDITIONAL LIKELIHOOD; CROSS VALIDATION; GRAPHICAL MODEL; INFERENCE PROBLEM; LEARNING BAYESIAN NETWORKS; LIKELIHOOD SCORE; LOSS FUNCTIONS; MACHINE-LEARNING; NAIVE BAYESIAN CLASSIFIER; PROBABILISTIC GRAPHICAL MODELS; REAL-WORLD DATASETS; RISK MINIMIZATION; RUNTIMES; STATE OF THE ART; STRUCTURE LEARNING; SYNTHETIC PROBLEM;

EID: 84855434565     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2011.10.006     Document Type: Conference Paper
Times cited : (22)

References (57)
  • 2
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, and E. Herskovits A Bayesian method for the induction of probabilistic networks from data Mach. Learn. 9 4 1992 309 347
    • (1992) Mach. Learn. , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 4
  • 7
    • 29344448279 scopus 로고    scopus 로고
    • Discriminative model selection for belief net structures
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • Y. Guo, R. Greiner, Discriminative model selection for belief net structures, in: Proceeding of the 20th National Conference on Artificial Intelligence (AAAI-2005), 2005, pp. 770-776. (Pubitemid 43006702)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 770-776
    • Guo, Y.1    Greiner, R.2
  • 8
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • S. Acid, L. Campos, and J. Castellano Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs Mach. Learn. 59 2005 213 235 (Pubitemid 40890478)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 9
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri On discriminative Bayesian network classifiers and logistic regression Mach. Learn. 59 3 2005 267 296 (Pubitemid 40890480)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grunwald, P.3    Myllymaki, P.4    Tirri, H.5
  • 10
    • 77956911311 scopus 로고    scopus 로고
    • Efficient heuristics for discriminative structure learning of Bayesian network classifiers
    • F. Pernkopf, and J.A. Bilmes Efficient heuristics for discriminative structure learning of Bayesian network classifiers J. Mach. Learn. Res. 11 2010 2323 2360
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2323-2360
    • Pernkopf, F.1    Bilmes, J.A.2
  • 11
    • 78650818467 scopus 로고    scopus 로고
    • Feature selection for Bayesian network classifiers using the MDL-FS score
    • M.M. Drugan, and M.A. Wiering Feature selection for Bayesian network classifiers using the MDL-FS score Int. J. Approx. Reas. 51 6 2010 695 717
    • (2010) Int. J. Approx. Reas. , vol.51 , Issue.6 , pp. 695-717
    • Drugan, M.M.1    Wiering, M.A.2
  • 12
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D.M. Chickering Learning Bayesian networks: The combination of knowledge and statistical data Mach. Learn. 20 1995 197 243
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 15
    • 56949103478 scopus 로고    scopus 로고
    • Generative or discriminative? Getting the best of both worlds
    • J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West, Oxford University Press
    • C.M. Bishop, and J. Lasserre Generative or discriminative? Getting the best of both worlds J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West, Bayesian Statistics vol. 8 2007 Oxford University Press 3 24
    • (2007) Bayesian Statistics , vol.8 , pp. 3-24
    • Bishop, C.M.1    Lasserre, J.2
  • 16
    • 31844434495 scopus 로고    scopus 로고
    • Discriminative versus generative parameter and structure learning of bayesian network classifiers
    • DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
    • F. Pernkopf, and J. Bilmes Discriminative versus generative parameter and structure learning of Bayesian network classifiers Proceedings of the 22nd International Conference on Machine learning (ICML-2005) 2005 Springer New York, NY, USA 657 664 (Pubitemid 43183390)
    • (2005) ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning , pp. 657-664
    • Pernkopf, F.1    Bilmes, J.2
  • 18
    • 4644329616 scopus 로고    scopus 로고
    • Bayesian network classifiers versus selective k-NN classifier
    • F. Pernkopf Bayesian network classifiers versus selective k-NN classifier Pattern Recognit. 38 1 2005 1 10
    • (2005) Pattern Recognit. , vol.38 , Issue.1 , pp. 1-10
    • Pernkopf, F.1
  • 19
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S.L. Lauritzen, and D.J. Spiegelhalter Local computations with probabilities on graphical structures and their application to expert systems J. Roy. Statist. Soc., Ser. B 50 1988 157 224
    • (1988) J. Roy. Statist. Soc., Ser. B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 20
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • W. Lam, and F. Bacchus Learning Bayesian belief networks: An approach based on the MDL principle Comput. Intell. 10 3 1994 269 293
    • (1994) Comput. Intell. , vol.10 , Issue.3 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 21
    • 0000582742 scopus 로고
    • Present position and potential developments: Some personal views. Statistical theory. The prequential approach
    • A.P. Dawid Present position and potential developments: Some personal views. Statistical theory. The prequential approach J. Roy. Statist. Soc., Ser. A 147 2 1984 278 292
    • (1984) J. Roy. Statist. Soc., Ser. A , vol.147 , Issue.2 , pp. 278-292
    • Dawid, A.P.1
  • 24
    • 0013237073 scopus 로고    scopus 로고
    • Introduction to inference for Bayesian networks
    • M.I. Jordan, MIT Press Cambridge, Massachusetts
    • R. Cowell Introduction to inference for Bayesian networks M.I. Jordan, Learning Graphical Models 1999 MIT Press Cambridge, Massachusetts 9 26
    • (1999) Learning Graphical Models , pp. 9-26
    • Cowell, R.1
  • 26
    • 78649934709 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, , 2010.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 28
    • 0003229133 scopus 로고    scopus 로고
    • The Bayes net toolbox for Matlab
    • K. Murphy The Bayes net toolbox for Matlab Comput. Sci. Stat. 33 2001 331 350
    • (2001) Comput. Sci. Stat. , vol.33 , pp. 331-350
    • Murphy, K.1
  • 29
    • 33749434592 scopus 로고    scopus 로고
    • BNT structure learning package: Documentation and experiments
    • Laboratoire PSI
    • P. Leray, O. Francois, BNT structure learning package: Documentation and experiments, Tech. Rep. FRE CNRS 2645, Laboratoire PSI, 2004.
    • (2004) Tech. Rep. FRE CNRS , vol.2645
    • Leray, P.1    Francois, O.2
  • 32
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 33
    • 0002444961 scopus 로고    scopus 로고
    • Counting unlabeled acyclic digraphs
    • C.H.C. Little, Lecture Notes in Mathematics Springer Berlin, Heidelberg
    • R.W. Robinson Counting unlabeled acyclic digraphs C.H.C. Little, Combinatorial Mathematics V Lecture Notes in Mathematics vol. 622 1997 Springer Berlin, Heidelberg 28 43
    • (1997) Combinatorial Mathematics v , vol.622 , pp. 28-43
    • Robinson, R.W.1
  • 36
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 37
    • 79251505570 scopus 로고    scopus 로고
    • Investigation of the K2 algorithm in learning Bayesian network classifiers
    • B. Lerner, and R. Malka Investigation of the K2 algorithm in learning Bayesian network classifiers Appl. Artif. Intell. 25 2011 74 96
    • (2011) Appl. Artif. Intell. , vol.25 , pp. 74-96
    • Lerner, B.1    Malka, R.2
  • 38
    • 7444237797 scopus 로고    scopus 로고
    • Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms
    • Advances in Knowledge Discovery and Data Mining
    • R.R. Bouckaert, and E. Frank Evaluating the replicability of significance tests for comparing learning algorithms Proceedings of the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD-2004) 2004 Springer 3 12 (Pubitemid 38824878)
    • (2004) Lecture Notes in Computer Science , Issue.3056 , pp. 3-12
    • Bouckaert, R.R.1    Frank, E.2
  • 41
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
    • DOI 10.1016/S0933-3657(98)00024-4, PII S0933365798000244
    • B. Sierra, and P. Larrañaga Predicting the survival in malignant skin Melanoma using Bayesian networks automatically induced by genetic algorithms - an empirical comparison between different approaches Artif. Intell. Med. 14 1998 215 230 (Pubitemid 28446555)
    • (1998) Artificial Intelligence in Medicine , vol.14 , Issue.1-2 , pp. 215-230
    • Sierra, B.1    Larranaga, P.2
  • 45
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 47
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • DOI 10.1007/s10994-005-0469-0
    • R. Greiner, and W. Zhou Structural extension to logistic regression: discriminative parameter learning of belief net classifiers Mach. Learn. 59 3 2005 297 322 (Pubitemid 40890481)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 297-322
    • Greinemr, R.1    Su, X.2    Shen, B.3    Zhou, W.4
  • 48
    • 69949110656 scopus 로고    scopus 로고
    • On the classification performance of TAN and general Bayesian networks
    • M.G. Madden On the classification performance of TAN and general Bayesian networks Knowl.-Based Syst. 22 7 2009 489 495
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.7 , pp. 489-495
    • Madden, M.G.1
  • 52
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • D. Geiger, and D. Heckerman Knowledge representation and inference in similarity networks and Bayesian multinets Artif. Intell. 82 1-2 1996 45 74 (Pubitemid 126374148)
    • (1996) Artificial Intelligence , vol.82 , Issue.1-2 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 57
    • 52949152920 scopus 로고    scopus 로고
    • Boosted Bayesian network classifiers
    • Y. Jing, V. Pavlović, and J.M. Rehg Boosted Bayesian network classifiers Mach. Learn. 73 2 2008 155 184
    • (2008) Mach. Learn. , vol.73 , Issue.2 , pp. 155-184
    • Jing, Y.1    Pavlović, V.2    Rehg, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.