메뉴 건너뛰기




Volumn 51, Issue 6, 2010, Pages 695-717

Feature selection for Bayesian network classifiers using the MDL-FS score

Author keywords

Feature subset selection; Minimum Description Length; Selective Bayesian classifiers; Tree augumented networks

Indexed keywords

BAYESIAN NETWORKS; FEATURE EXTRACTION; REDUNDANCY;

EID: 78650818467     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.02.001     Document Type: Article
Times cited : (30)

References (57)
  • 2
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • S. Kotsiantis, Supervised machine learning: a review of classification techniques, Informatica 31 (2007) 249-268. (Pubitemid 350208045)
    • (2007) Informatica (Ljubljana) , vol.31 , Issue.3 , pp. 249-268
    • Kotsiantis, S.B.1
  • 4
    • 0343773003 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian networks: A comparison with genetic and sequential algorithms
    • DOI 10.1016/S0888-613X(01)00038-X, PII S0888613X0100038X
    • I. Inza, P. Larranaga, B. Sierra, Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms, International Journal of Approximate Reasoning 27 (2) (2001) 143-164. (Pubitemid 32610599)
    • (2001) International Journal of Approximate Reasoning , vol.27 , Issue.2 , pp. 143-164
    • Inza, I.1    Larranaga, P.2    Sierra, B.3
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. Blum, P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence 97 (1-2) (1997) 245-271. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 6
    • 3242756447 scopus 로고    scopus 로고
    • Towards principled feature selection: Relevance, filters, and wrappers
    • I. Tsamardinos, C. Aliferis, Towards principled feature selection: relevance, filters, and wrappers, in: Workshop AI&Stat, 2003.
    • (2003) Workshop AI&Stat
    • Tsamardinos, I.1    Aliferis, C.2
  • 8
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • DOI 10.1016/j.ijar.2006.06.008, PII S0888613X06000600, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
    • J. Pena, R. Nilsson, J. Bjorkegren, J. Tegner, Towards scalable and data efficient learning of Markov boundaries, International Journal of Approximate Reasoning 45 (2) (2007) 211-232. (Pubitemid 46880195)
    • (2007) International Journal of Approximate Reasoning , vol.45 , Issue.2 , pp. 211-232
    • Pena, J.M.1    Nilsson, R.2    Bjorkegren, J.3    Tegner, J.4
  • 10
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, Modeling by shortest data description, Automatica 14 (1978) 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 11
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine Learning 29 (2-3) (1997) 131-163. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 12
    • 29344448279 scopus 로고    scopus 로고
    • Discriminative model selection for belief net structures
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • Y. Guo, R. Greiner, Discriminative model selection for belief net structures, in: Proceedings of the American Association for Artificial Intelligence (AAAI), 2005, pp. 770-776. (Pubitemid 43006702)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 770-776
    • Guo, Y.1    Greiner, R.2
  • 13
    • 65749101681 scopus 로고    scopus 로고
    • Bayesrule: A Markov-blanket based procedure for extracting a set of probabilistic rules from Bayesian classifiers
    • E. Hruschka, M. do Carmo Nicoletti, V. de Oliveira, G. Bressan, Bayesrule: a Markov-blanket based procedure for extracting a set of probabilistic rules from Bayesian classifiers, Hybrid Intelligent Systems 5 (2008) 83-96.
    • (2008) Hybrid Intelligent Systems , vol.5 , pp. 83-96
    • Hruschka, E.1    Do Carmo Nicoletti, M.2    De Oliveira, V.3    Bressan, G.4
  • 14
    • 52949152920 scopus 로고    scopus 로고
    • Boosted Bayesian network classifiers
    • Y. Jing, V. Pavlovic, J. Rehg, Boosted Bayesian network classifiers, Machine Learning 73 (2) (2008) 155-184.
    • (2008) Machine Learning , vol.73 , Issue.2 , pp. 155-184
    • Jing, Y.1    Pavlovic, V.2    Rehg, J.3
  • 15
    • 33846520072 scopus 로고    scopus 로고
    • Fast algorithms for robust classification with Bayesian nets
    • DOI 10.1016/j.ijar.2006.07.011, PII S0888613X06000946
    • A. Antonucci, M. Zaffalon, Fast algorithms for robust classification with Bayesian nets, International Journal of Approximate Reasoning 44 (3) (2007) 200-223. (Pubitemid 46157171)
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.3 , pp. 200-223
    • Antonucci, A.1    Zaffalon, M.2
  • 16
    • 59749084739 scopus 로고    scopus 로고
    • Bayesian classifiers based on kernel density estimation: Flexible classifiers
    • A. Perez, P. Larranaga, I. Inaki, Bayesian classifiers based on kernel density estimation: flexible classifiers, International Journal of Approximate Reasoning 50 (2) (2009) 341-362.
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.2 , pp. 341-362
    • Perez, A.1    Larranaga, P.2    Inaki, I.3
  • 17
    • 67449116599 scopus 로고    scopus 로고
    • Bayesian network models for hierarchical text classification from a thesaurus
    • L.M. de Campos, A.E. Romero, Bayesian network models for hierarchical text classification from a thesaurus, International Journal of Approximate Reasoning 50 (7) (2009) 932-944.
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.7 , pp. 932-944
    • De Campos, L.M.1    Romero, A.E.2
  • 22
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study
    • X. Zhu, X. Wu, Class noise vs. attribute noise: a quantitative study, Artificial Intelligence Review 22 (2004) 177-210.
    • (2004) Artificial Intelligence Review , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 23
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379-423. 623-656.
    • (1948) Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 24
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Leaning 29 (1997) 103-130. (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 25
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • M.H. Hansen, B. Yu, Model Selection and the Principle of Minimum Description Length, Journal of the American Statistical Association 96 (454) (2001) 746-774. (Pubitemid 33695629)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 26
    • 0035396479 scopus 로고    scopus 로고
    • Strong optimality of the normalized ML models as universal codes and information in data
    • DOI 10.1109/18.930912, PII S0018944801044339
    • J. Rissanen, Strong optimality of the normalized ML models as universal codes and information in data, IEEE Transactions on Information Theory 47 (2001) 1712-1717. (Pubitemid 32644690)
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.5 , pp. 1712-1717
    • Rissanen, J.1
  • 32
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence (1997) 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 34
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H. Liu, J. Sun, L. Liu, H. Zhang, Feature selection with dynamic mutual information, Pattern Recognition 42 (2009) 1330-1339.
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 35
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
    • DOI 10.1016/j.jbi.2005.05.004, PII S153204640500047X
    • R. Blanco, I. Inza, M. Merino, J. Quiroga, P. Larranaga, Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips, Journal of Biomedical Informatics 38 (2005) 376-388. (Pubitemid 41405808)
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 376-388
    • Blanco, R.1    Inza, I.2    Merino, M.3    Quiroga, J.4    Larranaga, P.5
  • 36
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu, H. Liu, Efficient feature selection via analysis of relevance and redundancy, Machine Learning 5 (2004) 1205-1224.
    • (2004) Machine Learning , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 40
    • 31844434495 scopus 로고    scopus 로고
    • Discriminative versus generative parameter and structure learning of bayesian network classifiers
    • DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
    • F. Pernkopf, J. Bilmes, Discriminative versus generative parameter and structure learning of Bayesian network classifiers, in: Proceedings of the International Conference on Machine Learning (ICML), 2005, pp. 657-664. (Pubitemid 43183390)
    • (2005) ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning , pp. 657-664
    • Pernkopf, F.1    Bilmes, J.2
  • 42
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Machine Learning 3 (2003) 1157-1182.
    • (2003) Machine Learning , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 44
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow, C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transaction on Information Theory (14) (1968) 462-467.
    • (1968) IEEE Transaction on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 48
    • 33947268013 scopus 로고    scopus 로고
    • A stochastic algorithm for feature selection in pattern recognition
    • S. Gadat, L. Younes, A stochastic algorithm for feature selection in pattern recognition, Journal of Machine Learning Research 8 (2007) 509-547. (Pubitemid 46434117)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 509-547
    • Gadat, S.1    Younes, L.2
  • 49
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: Algorithms, theories, and applications
    • DOI 10.1109/TPAMI.2007.1093
    • Y. Sun, Iterative relief for feature weighting: algorithms, theories and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (6) (2007) 1035-1051. (Pubitemid 46667414)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 50
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret, Fast binary feature selection with conditional mutual information, Machine Learning 5 (2004) 1531-1555.
    • (2004) Machine Learning , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 51
    • 42449117307 scopus 로고    scopus 로고
    • Feature selection for classificatory analysis based on information-theoretic criteria
    • DOI 10.3724/SP.J.1004.2008.00383
    • J. Huang, N. Lv, S. Li, Y. Cai, Feature selection for classificatory analysis based on information-theoretic criteria, Acta Automatica Sinica 34 (3) (2008) 383-392. (Pubitemid 351558621)
    • (2008) Zidonghua Xuebao/Acta Automatica Sinica , vol.34 , Issue.3 , pp. 383-392
    • Huang, J.-J.1    Lu, N.2    Li, S.-Q.3    Cai, Y.-Z.4
  • 52
    • 38349127958 scopus 로고    scopus 로고
    • Invariant optimal feature selection: A distance discriminant and feature ranking based solution
    • J. Liang, S. Yang, A. Winstanley, Invariant optimal feature selection: a distance discriminant and feature ranking based solution, Pattern Recognition 41 (5) (2008) 1429-1439.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1429-1439
    • Liang, J.1    Yang, S.2    Winstanley, A.3
  • 53
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Y. Song, F. Nie, C. Zhang, S. Xiang, A unified framework for semi-supervised dimensionality reduction, Pattern Recognition 41 (9) (2008) 2789-2799.
    • (2008) Pattern Recognition , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 54
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the International Conference on Machine Learning (ICML), 2007, pp. 1151-1157. (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 55
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Joint Conference on Artificial Intelligence, 1993, pp. 1022-1027.
    • (1993) Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.