-
1
-
-
0026992322
-
An analysis of Bayesian classifiers
-
P. Langley, W. Iba, K. Thompson, An analysis of Bayesian classifiers, in: Conference on Artificial Intelligence, 1992, pp. 223-228.
-
(1992)
Conference on Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
2
-
-
36749047332
-
Supervised machine learning: A review of classification techniques
-
S. Kotsiantis, Supervised machine learning: a review of classification techniques, Informatica 31 (2007) 249-268. (Pubitemid 350208045)
-
(2007)
Informatica (Ljubljana)
, vol.31
, Issue.3
, pp. 249-268
-
-
Kotsiantis, S.B.1
-
4
-
-
0343773003
-
Feature subset selection by Bayesian networks: A comparison with genetic and sequential algorithms
-
DOI 10.1016/S0888-613X(01)00038-X, PII S0888613X0100038X
-
I. Inza, P. Larranaga, B. Sierra, Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms, International Journal of Approximate Reasoning 27 (2) (2001) 143-164. (Pubitemid 32610599)
-
(2001)
International Journal of Approximate Reasoning
, vol.27
, Issue.2
, pp. 143-164
-
-
Inza, I.1
Larranaga, P.2
Sierra, B.3
-
5
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
PII S0004370297000635
-
A. Blum, P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence 97 (1-2) (1997) 245-271. (Pubitemid 127401106)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
6
-
-
3242756447
-
Towards principled feature selection: Relevance, filters, and wrappers
-
I. Tsamardinos, C. Aliferis, Towards principled feature selection: relevance, filters, and wrappers, in: Workshop AI&Stat, 2003.
-
(2003)
Workshop AI&Stat
-
-
Tsamardinos, I.1
Aliferis, C.2
-
7
-
-
33947525717
-
Consistent feature selection for pattern recognition in polynomial time
-
R. Nilsson, J. Pena, J. Bjorkegren, J. Tegner, Consistent feature selection for pattern recognition in polynomial time, Journal of Machine Learning Research 8 (2007) 589-612. (Pubitemid 46473524)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 589-612
-
-
Nilsson, R.1
Pena, J.M.2
Bjorkegren, J.3
Tegner, J.4
-
8
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
DOI 10.1016/j.ijar.2006.06.008, PII S0888613X06000600, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
-
J. Pena, R. Nilsson, J. Bjorkegren, J. Tegner, Towards scalable and data efficient learning of Markov boundaries, International Journal of Approximate Reasoning 45 (2) (2007) 211-232. (Pubitemid 46880195)
-
(2007)
International Journal of Approximate Reasoning
, vol.45
, Issue.2
, pp. 211-232
-
-
Pena, J.M.1
Nilsson, R.2
Bjorkegren, J.3
Tegner, J.4
-
10
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen, Modeling by shortest data description, Automatica 14 (1978) 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
11
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine Learning 29 (2-3) (1997) 131-163. (Pubitemid 127510036)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
12
-
-
29344448279
-
Discriminative model selection for belief net structures
-
Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
-
Y. Guo, R. Greiner, Discriminative model selection for belief net structures, in: Proceedings of the American Association for Artificial Intelligence (AAAI), 2005, pp. 770-776. (Pubitemid 43006702)
-
(2005)
Proceedings of the National Conference on Artificial Intelligence
, vol.2
, pp. 770-776
-
-
Guo, Y.1
Greiner, R.2
-
13
-
-
65749101681
-
Bayesrule: A Markov-blanket based procedure for extracting a set of probabilistic rules from Bayesian classifiers
-
E. Hruschka, M. do Carmo Nicoletti, V. de Oliveira, G. Bressan, Bayesrule: a Markov-blanket based procedure for extracting a set of probabilistic rules from Bayesian classifiers, Hybrid Intelligent Systems 5 (2008) 83-96.
-
(2008)
Hybrid Intelligent Systems
, vol.5
, pp. 83-96
-
-
Hruschka, E.1
Do Carmo Nicoletti, M.2
De Oliveira, V.3
Bressan, G.4
-
14
-
-
52949152920
-
Boosted Bayesian network classifiers
-
Y. Jing, V. Pavlovic, J. Rehg, Boosted Bayesian network classifiers, Machine Learning 73 (2) (2008) 155-184.
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 155-184
-
-
Jing, Y.1
Pavlovic, V.2
Rehg, J.3
-
15
-
-
33846520072
-
Fast algorithms for robust classification with Bayesian nets
-
DOI 10.1016/j.ijar.2006.07.011, PII S0888613X06000946
-
A. Antonucci, M. Zaffalon, Fast algorithms for robust classification with Bayesian nets, International Journal of Approximate Reasoning 44 (3) (2007) 200-223. (Pubitemid 46157171)
-
(2007)
International Journal of Approximate Reasoning
, vol.44
, Issue.3
, pp. 200-223
-
-
Antonucci, A.1
Zaffalon, M.2
-
16
-
-
59749084739
-
Bayesian classifiers based on kernel density estimation: Flexible classifiers
-
A. Perez, P. Larranaga, I. Inaki, Bayesian classifiers based on kernel density estimation: flexible classifiers, International Journal of Approximate Reasoning 50 (2) (2009) 341-362.
-
(2009)
International Journal of Approximate Reasoning
, vol.50
, Issue.2
, pp. 341-362
-
-
Perez, A.1
Larranaga, P.2
Inaki, I.3
-
17
-
-
67449116599
-
Bayesian network models for hierarchical text classification from a thesaurus
-
L.M. de Campos, A.E. Romero, Bayesian network models for hierarchical text classification from a thesaurus, International Journal of Approximate Reasoning 50 (7) (2009) 932-944.
-
(2009)
International Journal of Approximate Reasoning
, vol.50
, Issue.7
, pp. 932-944
-
-
De Campos, L.M.1
Romero, A.E.2
-
19
-
-
14344256569
-
Learning Bayesian Network classifiers by maximizing conditional likelihood
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
D. Grossman, P. Domingos, Learning Bayesian networks classifiers by maximising conditional likelihood, in: Proceedings of the International Conference on Machine Learning, 2004, pp. 361-368. (Pubitemid 40290829)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 361-368
-
-
Grossman, D.1
Domingos, P.2
-
20
-
-
38049123674
-
Discriminative vs. generative learning of Bayesian network classifiers
-
G. Santafè, J. Lozano, P. Larranaga, Discriminative vs. generative learning of Bayesian network classifiers, in: Proceedings of Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2007, pp. 453-464.
-
(2007)
Proceedings of Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 453-464
-
-
Santafè, G.1
Lozano, J.2
Larranaga, P.3
-
22
-
-
19544372918
-
Class noise vs. attribute noise: A quantitative study
-
X. Zhu, X. Wu, Class noise vs. attribute noise: a quantitative study, Artificial Intelligence Review 22 (2004) 177-210.
-
(2004)
Artificial Intelligence Review
, vol.22
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
-
23
-
-
84856043672
-
A mathematical theory of communication
-
623-656
-
C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379-423. 623-656.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
24
-
-
0031269184
-
On the optimality of the simple bayesian classifier under zero-one loss
-
P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Leaning 29 (1997) 103-130. (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
25
-
-
0141879236
-
Model selection and the principle of minimum description length
-
M.H. Hansen, B. Yu, Model Selection and the Principle of Minimum Description Length, Journal of the American Statistical Association 96 (454) (2001) 746-774. (Pubitemid 33695629)
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.454
, pp. 746-774
-
-
Hansen, M.H.1
Yu, B.2
-
26
-
-
0035396479
-
Strong optimality of the normalized ML models as universal codes and information in data
-
DOI 10.1109/18.930912, PII S0018944801044339
-
J. Rissanen, Strong optimality of the normalized ML models as universal codes and information in data, IEEE Transactions on Information Theory 47 (2001) 1712-1717. (Pubitemid 32644690)
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.5
, pp. 1712-1717
-
-
Rissanen, J.1
-
27
-
-
34347231420
-
Efficient computation of stochastic complexity
-
P. Kontkanen, W. Buntine, P. Myllymaki, J. Rissanen, H. Tirri, Efficient computation of stochastic complexity, in: Workshop AI&Stat, 2003, pp. 181-188.
-
(2003)
Workshop AI&Stat
, pp. 181-188
-
-
Kontkanen, P.1
Buntine, W.2
Myllymaki, P.3
Rissanen, J.4
Tirri, H.5
-
28
-
-
77955230275
-
Learning locally minimax optimal Bayesian networks
-
T. Silander, T. Roos, P. Myllymaki, Learning locally minimax optimal Bayesian networks, International Journal of Approximate Reasoning 51 (5) (2010) 544-557.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.5
, pp. 544-557
-
-
Silander, T.1
Roos, T.2
Myllymaki, P.3
-
31
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in: Proceedings of the International Conference on Machine Learning (ICML), 1994, pp. 121-129.
-
(1994)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
32
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence (1997) 273-324. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
34
-
-
62349118015
-
Feature selection with dynamic mutual information
-
H. Liu, J. Sun, L. Liu, H. Zhang, Feature selection with dynamic mutual information, Pattern Recognition 42 (2009) 1330-1339.
-
(2009)
Pattern Recognition
, vol.42
, pp. 1330-1339
-
-
Liu, H.1
Sun, J.2
Liu, L.3
Zhang, H.4
-
35
-
-
26044441615
-
Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
-
DOI 10.1016/j.jbi.2005.05.004, PII S153204640500047X
-
R. Blanco, I. Inza, M. Merino, J. Quiroga, P. Larranaga, Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips, Journal of Biomedical Informatics 38 (2005) 376-388. (Pubitemid 41405808)
-
(2005)
Journal of Biomedical Informatics
, vol.38
, Issue.5
, pp. 376-388
-
-
Blanco, R.1
Inza, I.2
Merino, M.3
Quiroga, J.4
Larranaga, P.5
-
36
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu, H. Liu, Efficient feature selection via analysis of relevance and redundancy, Machine Learning 5 (2004) 1205-1224.
-
(2004)
Machine Learning
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
37
-
-
85166290991
-
BAYDA: Software for Bayesian classification and feature selection
-
P. Kontkanen, P. MyllymSki, T. Silander, H. Tirri, BAYDA: software for Bayesian classification and feature selection, in: Proceedings of Knowledge discovery and Data-Mining (KDD), 1998, pp. 254-258.
-
(1998)
Proceedings of Knowledge Discovery and Data-Mining (KDD)
, pp. 254-258
-
-
Kontkanen, P.1
Myllymski, P.2
Silander, T.3
Tirri, H.4
-
40
-
-
31844434495
-
Discriminative versus generative parameter and structure learning of bayesian network classifiers
-
DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
F. Pernkopf, J. Bilmes, Discriminative versus generative parameter and structure learning of Bayesian network classifiers, in: Proceedings of the International Conference on Machine Learning (ICML), 2005, pp. 657-664. (Pubitemid 43183390)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 657-664
-
-
Pernkopf, F.1
Bilmes, J.2
-
42
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Machine Learning 3 (2003) 1157-1182.
-
(2003)
Machine Learning
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
44
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow, C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transaction on Information Theory (14) (1968) 462-467.
-
(1968)
IEEE Transaction on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
48
-
-
33947268013
-
A stochastic algorithm for feature selection in pattern recognition
-
S. Gadat, L. Younes, A stochastic algorithm for feature selection in pattern recognition, Journal of Machine Learning Research 8 (2007) 509-547. (Pubitemid 46434117)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 509-547
-
-
Gadat, S.1
Younes, L.2
-
49
-
-
34247622378
-
Iterative RELIEF for feature weighting: Algorithms, theories, and applications
-
DOI 10.1109/TPAMI.2007.1093
-
Y. Sun, Iterative relief for feature weighting: algorithms, theories and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (6) (2007) 1035-1051. (Pubitemid 46667414)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.6
, pp. 1035-1051
-
-
Sun, Y.1
-
50
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
F. Fleuret, Fast binary feature selection with conditional mutual information, Machine Learning 5 (2004) 1531-1555.
-
(2004)
Machine Learning
, vol.5
, pp. 1531-1555
-
-
Fleuret, F.1
-
51
-
-
42449117307
-
Feature selection for classificatory analysis based on information-theoretic criteria
-
DOI 10.3724/SP.J.1004.2008.00383
-
J. Huang, N. Lv, S. Li, Y. Cai, Feature selection for classificatory analysis based on information-theoretic criteria, Acta Automatica Sinica 34 (3) (2008) 383-392. (Pubitemid 351558621)
-
(2008)
Zidonghua Xuebao/Acta Automatica Sinica
, vol.34
, Issue.3
, pp. 383-392
-
-
Huang, J.-J.1
Lu, N.2
Li, S.-Q.3
Cai, Y.-Z.4
-
52
-
-
38349127958
-
Invariant optimal feature selection: A distance discriminant and feature ranking based solution
-
J. Liang, S. Yang, A. Winstanley, Invariant optimal feature selection: a distance discriminant and feature ranking based solution, Pattern Recognition 41 (5) (2008) 1429-1439.
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1429-1439
-
-
Liang, J.1
Yang, S.2
Winstanley, A.3
-
53
-
-
44649132677
-
A unified framework for semi-supervised dimensionality reduction
-
Y. Song, F. Nie, C. Zhang, S. Xiang, A unified framework for semi-supervised dimensionality reduction, Pattern Recognition 41 (9) (2008) 2789-2799.
-
(2008)
Pattern Recognition
, vol.41
, Issue.9
, pp. 2789-2799
-
-
Song, Y.1
Nie, F.2
Zhang, C.3
Xiang, S.4
-
54
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the International Conference on Machine Learning (ICML), 2007, pp. 1151-1157. (Pubitemid 47275183)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
55
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Joint Conference on Artificial Intelligence, 1993, pp. 1022-1027.
-
(1993)
Joint Conference on Artificial Intelligence
, pp. 1022-1027
-
-
Fayyad, U.M.1
Irani, K.B.2
|