-
1
-
-
0005809110
-
Polynomial learnability of probablistic concepts with respect to the Kullback-Leibler divergence
-
Abe, N., Takeuchi, J., & Warmuth, M. (1991 ). Polynomial learnability of probablistic concepts with respect to the Kullback-Leibler divergence. In Conference on Learning Theory.
-
(1991)
Conference on Learning Theory
-
-
Abe, N.1
Takeuchi, J.2
Warmuth, M.3
-
2
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
-
(1997)
Machine Learning
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
9
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137.
-
(2002)
Artificial Intelligence
, pp. 137
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
10
-
-
0003846047
-
Learning Bayesian networks is NP-hard
-
Microsoft Research
-
Chickering, D. M., Geiger, D., & Heckerman, D. (1994). Learning Bayesian networks is NP-hard. Technical Report MSR-TR-94-17, Microsoft Research.
-
(1994)
Technical Report
, vol.MSR-TR-94-17
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
11
-
-
85009263395
-
Segmental GPD training of HMM based speech recognizer
-
Chou, W., Juang, B., & Lee, C. (1992). Segmental GPD training of HMM based speech recognizer. In International Conference on Acoustics, Speech and Signal Processing, vol. 1 (pp. 473-476).
-
(1992)
International Conference on Acoustics, Speech and Signal Processing
, vol.1
, pp. 473-476
-
-
Chou, W.1
Juang, B.2
Lee, C.3
-
12
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Tans. on Information Theory (pp. 462-467).
-
(1968)
IEEE Tans. on Information Theory
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
13
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
Cooper, G. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artificial intelligence, 42.
-
(1990)
Artificial Intelligence
, vol.42
-
-
Cooper, G.1
-
14
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
17
-
-
0031269467
-
The sample complexity of learning fixed-structure Bayesian networks
-
Dasgupta, S. (1997). The sample complexity of Learning fixed-structure Bayesian networks. Machine Learning, 29, 165-180
-
(1997)
Machine Learning
, vol.29
, pp. 165-180
-
-
Dasgupta, S.1
-
19
-
-
0017094666
-
Properties of diagnostic data distributions
-
Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics, 32, 647-658.
-
(1976)
Biometrics
, vol.32
, pp. 647-658
-
-
Dawid, A.P.1
-
20
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. (with discussion). J. Royal Statistics Society, Series B, 39.
-
(1977)
J. Royal Statistics Society, Series B
, vol.39
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
22
-
-
10444280570
-
The TM algorithm for maximising a conditional likelihood function
-
Edwards, D., & Lauritzen, S. (2001). The TM algorithm for maximising a conditional likelihood function. Biometrika, 88, 961-972.
-
(2001)
Biometrika
, vol.88
, pp. 961-972
-
-
Edwards, D.1
Lauritzen, S.2
-
24
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning Journal, 29, 131-163.
-
(1997)
Machine Learning Journal
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
26
-
-
0036927090
-
Structural extension to logistic regression: Discriminant parameter learning of belief net classifiers
-
Greiner, R., & Zhou, W. (2002). Structural extension to logistic regression: Discriminant parameter learning of belief net classifiers. In American Association of Artificial Intelligence.
-
(2002)
American Association of Artificial Intelligence
-
-
Greiner, R.1
Zhou, W.2
-
28
-
-
0003593041
-
-
Boston, MA, PWS Publishing
-
Hagan, M., Demuth, H., & Beale, M. (1996). Neural network design. Boston, MA, PWS Publishing.
-
(1996)
Neural Network Design
-
-
Hagan, M.1
Demuth, H.2
Beale, M.3
-
29
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
M. I. Jordan (Ed.)
-
Heckerman, D. E. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models.
-
(1998)
Learning in Graphical Models
-
-
Heckerman, D.E.1
-
32
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence.
-
(1995)
International Joint Conference on Artificial Intelligence
-
-
Kohavi, R.1
-
33
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97:1-2.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 1-2
-
-
Kohavi, R.1
John, G.H.2
-
34
-
-
0013155979
-
On supervised selection of Bayesian networks
-
Kontkanen, P., Myllymäki, P., Silander, T., & Tirri, H. (1999). On supervised selection of Bayesian networks. In Uncertainty in Artificial Intelligence (pp. 334-342).
-
(1999)
Uncertainty in Artificial Intelligence
, pp. 334-342
-
-
Kontkanen, P.1
Myllymäki, P.2
Silander, T.3
Tirri, H.4
-
36
-
-
58149210716
-
The EM algorithm for graphical association models with missing data
-
Lauritzen, S. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
-
(1995)
Computational Statistics and Data Analysis
, vol.19
, pp. 191-201
-
-
Lauritzen, S.1
-
39
-
-
0012352869
-
Algorithms for maximum-likelihood logistic regression
-
CMU CALD
-
Minka. T. (2001). Algorithms for maximum-likelihood logistic regression. Technical report, CMU CALD, http://www.stat.cmu.edu/~minka/papers/logreg/minka- logreg.pdf.
-
(2001)
Technical Report
-
-
Minka, T.1
-
41
-
-
0042847140
-
Inference for the generalization error
-
Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52, 239-281
-
(2003)
Machine Learning
, vol.52
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
43
-
-
1942418620
-
On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes
-
Ng, A., & Jordan, M. (2001). On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes. In Neural Information Processing Systems.
-
(2001)
Neural Information Processing Systems
-
-
Ng, A.1
Jordan, M.2
-
45
-
-
0004161838
-
-
Cambridge
-
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (2002). Numerical recipes in C. Cambridge, http://www.nr.com/.
-
(2002)
Numerical Recipes in C
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
47
-
-
21244467519
-
On discriminative Bayesian network classifiers and logistic regression
-
Roos, T., Wettig, H., Grünwald, P., & Myllymäki, P., Tirri, H. (2005). On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59:3, 269-298.
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 269-298
-
-
Roos, T.1
Wettig, H.2
Grünwald, P.3
Myllymäki, P.4
Tirri, H.5
-
48
-
-
0005470277
-
Comparison of optimization methods for discriminative training criteria
-
Schlüter, R., Macherey, W., Kanthak, S., Ney, H., & Welling, L. (1997). Comparison of optimization methods for discriminative training criteria. In Proc. of European Conference on Speech Communication and Technology.
-
(1997)
Proc. of European Conference on Speech Communication and Technology
-
-
Schlüter, R.1
Macherey, W.2
Kanthak, S.3
Ney, H.4
Welling, L.5
-
49
-
-
0345097610
-
Discriminative parameter learning of general Bayesian network classifiers
-
Shen, B., Su, X., Greiner, R., Musilek, P., & Cheng, C. (2003). Discriminative parameter learning of general Bayesian network classifiers. In International Conference on Tools with Artificial Intelligence.
-
(2003)
International Conference on Tools with Artificial Intelligence
-
-
Shen, B.1
Su, X.2
Greiner, R.3
Musilek, P.4
Cheng, C.5
-
50
-
-
10444274715
-
The convergence rate of the TM algorithm of Edwards and Lauritzen
-
Sundberg, R. (2002). The convergence rate of the TM algorithm of Edwards and Lauritzen. Biometrika, 89, 478-483.
-
(2002)
Biometrika
, vol.89
, pp. 478-483
-
-
Sundberg, R.1
-
51
-
-
0037980626
-
Model selection criteria for learning belief nets: An empirical comparison
-
Van Allen, T., & Greiner, R. (2000). Model selection criteria for learning belief nets: An empirical comparison. In International Conference on Machine Learning (pp. 1047-1054).
-
(2000)
International Conference on Machine Learning
, pp. 1047-1054
-
-
Van Allen, T.1
Greiner, R.2
|