메뉴 건너뛰기




Volumn 59, Issue 3, 2005, Pages 297-322

Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers

Author keywords

(Bayesian) belief nets; Classification; Computational sample complexity; Logistic regression; PAC learning

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA REDUCTION; ERRORS; LEARNING SYSTEMS; MAXIMUM LIKELIHOOD ESTIMATION; PARAMETER ESTIMATION; REGRESSION ANALYSIS;

EID: 21244444642     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-005-0469-0     Document Type: Article
Times cited : (85)

References (52)
  • 1
    • 0005809110 scopus 로고
    • Polynomial learnability of probablistic concepts with respect to the Kullback-Leibler divergence
    • Abe, N., Takeuchi, J., & Warmuth, M. (1991 ). Polynomial learnability of probablistic concepts with respect to the Kullback-Leibler divergence. In Conference on Learning Theory.
    • (1991) Conference on Learning Theory
    • Abe, N.1    Takeuchi, J.2    Warmuth, M.3
  • 2
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
    • (1997) Machine Learning , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 9
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137.
    • (2002) Artificial Intelligence , pp. 137
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 10
    • 0003846047 scopus 로고
    • Learning Bayesian networks is NP-hard
    • Microsoft Research
    • Chickering, D. M., Geiger, D., & Heckerman, D. (1994). Learning Bayesian networks is NP-hard. Technical Report MSR-TR-94-17, Microsoft Research.
    • (1994) Technical Report , vol.MSR-TR-94-17
    • Chickering, D.M.1    Geiger, D.2    Heckerman, D.3
  • 12
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Tans. on Information Theory (pp. 462-467).
    • (1968) IEEE Tans. on Information Theory , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 13
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artificial intelligence, 42.
    • (1990) Artificial Intelligence , vol.42
    • Cooper, G.1
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 17
    • 0031269467 scopus 로고    scopus 로고
    • The sample complexity of learning fixed-structure Bayesian networks
    • Dasgupta, S. (1997). The sample complexity of Learning fixed-structure Bayesian networks. Machine Learning, 29, 165-180
    • (1997) Machine Learning , vol.29 , pp. 165-180
    • Dasgupta, S.1
  • 19
    • 0017094666 scopus 로고
    • Properties of diagnostic data distributions
    • Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics, 32, 647-658.
    • (1976) Biometrics , vol.32 , pp. 647-658
    • Dawid, A.P.1
  • 22
    • 10444280570 scopus 로고    scopus 로고
    • The TM algorithm for maximising a conditional likelihood function
    • Edwards, D., & Lauritzen, S. (2001). The TM algorithm for maximising a conditional likelihood function. Biometrika, 88, 961-972.
    • (2001) Biometrika , vol.88 , pp. 961-972
    • Edwards, D.1    Lauritzen, S.2
  • 26
    • 0036927090 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminant parameter learning of belief net classifiers
    • Greiner, R., & Zhou, W. (2002). Structural extension to logistic regression: Discriminant parameter learning of belief net classifiers. In American Association of Artificial Intelligence.
    • (2002) American Association of Artificial Intelligence
    • Greiner, R.1    Zhou, W.2
  • 29
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • M. I. Jordan (Ed.)
    • Heckerman, D. E. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models.
    • (1998) Learning in Graphical Models
    • Heckerman, D.E.1
  • 32
  • 33
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97:1-2.
    • (1997) Artificial Intelligence , vol.97 , pp. 1-2
    • Kohavi, R.1    John, G.H.2
  • 36
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • Lauritzen, S. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.1
  • 39
    • 0012352869 scopus 로고    scopus 로고
    • Algorithms for maximum-likelihood logistic regression
    • CMU CALD
    • Minka. T. (2001). Algorithms for maximum-likelihood logistic regression. Technical report, CMU CALD, http://www.stat.cmu.edu/~minka/papers/logreg/minka- logreg.pdf.
    • (2001) Technical Report
    • Minka, T.1
  • 41
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52, 239-281
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 43
    • 1942418620 scopus 로고    scopus 로고
    • On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes
    • Ng, A., & Jordan, M. (2001). On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes. In Neural Information Processing Systems.
    • (2001) Neural Information Processing Systems
    • Ng, A.1    Jordan, M.2
  • 47
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • Roos, T., Wettig, H., Grünwald, P., & Myllymäki, P., Tirri, H. (2005). On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59:3, 269-298.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 269-298
    • Roos, T.1    Wettig, H.2    Grünwald, P.3    Myllymäki, P.4    Tirri, H.5
  • 50
    • 10444274715 scopus 로고    scopus 로고
    • The convergence rate of the TM algorithm of Edwards and Lauritzen
    • Sundberg, R. (2002). The convergence rate of the TM algorithm of Edwards and Lauritzen. Biometrika, 89, 478-483.
    • (2002) Biometrika , vol.89 , pp. 478-483
    • Sundberg, R.1
  • 51
    • 0037980626 scopus 로고    scopus 로고
    • Model selection criteria for learning belief nets: An empirical comparison
    • Van Allen, T., & Greiner, R. (2000). Model selection criteria for learning belief nets: An empirical comparison. In International Conference on Machine Learning (pp. 1047-1054).
    • (2000) International Conference on Machine Learning , pp. 1047-1054
    • Van Allen, T.1    Greiner, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.