-
2
-
-
21244484641
-
Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
-
Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18, 445-490.
-
(2003)
Journal of Artificial Intelligence Research
, vol.18
, pp. 445-490
-
-
Acid, S.1
De Campos, L.M.2
-
4
-
-
0003408496
-
-
University of California, Irvine, Dept. of Information and Computer Sciences
-
Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine, Dept. of Information and Computer Sciences.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
6
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
Cheng, J., Greiner, R., Kelly, J., Bell, D. A., & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137, 43-90.
-
(2002)
Artificial Intelligence
, vol.137
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.A.4
Liu, W.5
-
8
-
-
0042496103
-
Learning equivalence classes of Bayesian network structures
-
Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
9
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
10
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-348.
-
(1992)
Machine Learning
, vol.9
, pp. 309-348
-
-
Cooper, G.F.1
Herskovits, E.2
-
12
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P., & Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.J.2
-
16
-
-
21244449935
-
Identifying Markov blankets with decision tree induction
-
Frey, L., Fisher, D., Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003). Identifying Markov blankets with decision tree induction. In Proceedings of the Third IEEE International Conference on Data Mining (pp. 59-66).
-
(2003)
Proceedings of the Third IEEE International Conference on Data Mining
, pp. 59-66
-
-
Frey, L.1
Fisher, D.2
Tsamardinos, I.3
Aliferis, C.F.4
Statnikov, A.5
-
17
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
20
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
24
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
25
-
-
84904506139
-
MLC++: A machine learning library in C++
-
Kohavi, R., John, G. H., Long, R., Manley, D., & Pfleger, K. (1994). MLC++: A machine learning library in C++. In Proceedings of the Sixth International Conference on Tools with Artificial Intelligence (pp. 740-743).
-
(1994)
Proceedings of the Sixth International Conference on Tools with Artificial Intelligence
, pp. 740-743
-
-
Kohavi, R.1
John, G.H.2
Long, R.3
Manley, D.4
Pfleger, K.5
-
28
-
-
0028482006
-
Learning Bayesian belief networks. An approach based on the MDL principle
-
Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
32
-
-
0008155075
-
Searching for dependencies in Bayesian classifiers
-
Pazzani, M. J. (1995). Searching for dependencies in Bayesian classifiers. Lecture Notes in Statistics, 112, 239-248.
-
(1995)
Lecture Notes in Statistics
, vol.112
, pp. 239-248
-
-
Pazzani, M.J.1
-
36
-
-
0344447109
-
Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
-
Sierra, B. & Larrañaga, P. (1998). Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artificial Intelligence in Medicine, 14, 215-230.
-
(1998)
Artificial Intelligence in Medicine
, vol.14
, pp. 215-230
-
-
Sierra, B.1
Larrañaga, P.2
-
38
-
-
0003614273
-
-
Lecture Notes in Statistics 81. New York: Springer Verlag
-
Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction and Search. Lecture Notes in Statistics 81. New York: Springer Verlag.
-
(1993)
Causation, Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
39
-
-
1842815760
-
Latent variable discovery in classification models
-
Zhang, N. L., Nielsen, T. D., & Jensen, F. V. (2004). Latent variable discovery in classification models. Artificial Intelligence in Medicine, 30, 283-299.
-
(2004)
Artificial Intelligence in Medicine
, vol.30
, pp. 283-299
-
-
Zhang, N.L.1
Nielsen, T.D.2
Jensen, F.V.3
|