메뉴 건너뛰기




Volumn 59, Issue 3, 2005, Pages 213-235

Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs

Author keywords

Bayesian networks; Classification; Directed acyclic graphs; Learning algorithms; Partially directed acyclic graphs; Scoring functions

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; EQUIVALENCE CLASSES; FUNCTIONS; GRAPHIC METHODS; LEARNING ALGORITHMS; ONLINE SEARCHING;

EID: 21244467165     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-005-0473-4     Document Type: Article
Times cited : (55)

References (39)
  • 2
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18, 445-490.
    • (2003) Journal of Artificial Intelligence Research , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Dept. of Information and Computer Sciences
    • Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine, Dept. of Information and Computer Sciences.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 6
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • Cheng, J., Greiner, R., Kelly, J., Bell, D. A., & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137, 43-90.
    • (2002) Artificial Intelligence , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.A.4    Liu, W.5
  • 8
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 9
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-348.
    • (1992) Machine Learning , vol.9 , pp. 309-348
    • Cooper, G.F.1    Herskovits, E.2
  • 12
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos, P., & Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.J.2
  • 20
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 24
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 28
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks. An approach based on the MDL principle
    • Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 32
    • 0008155075 scopus 로고
    • Searching for dependencies in Bayesian classifiers
    • Pazzani, M. J. (1995). Searching for dependencies in Bayesian classifiers. Lecture Notes in Statistics, 112, 239-248.
    • (1995) Lecture Notes in Statistics , vol.112 , pp. 239-248
    • Pazzani, M.J.1
  • 36
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
    • Sierra, B. & Larrañaga, P. (1998). Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artificial Intelligence in Medicine, 14, 215-230.
    • (1998) Artificial Intelligence in Medicine , vol.14 , pp. 215-230
    • Sierra, B.1    Larrañaga, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.