메뉴 건너뛰기




Volumn 22, Issue 7, 2009, Pages 489-495

On the classification performance of TAN and general Bayesian networks

Author keywords

Bayesian networks; Classification; Inductive learning; Na ve Bayes; Parameter estimation; TAN

Indexed keywords

BASIC PARAMETERS; CLASSIFICATION; CLASSIFICATION ACCURACY; CLASSIFICATION DECISION; CLASSIFICATION PERFORMANCE; DATA SETS; EXPERIMENTAL ANALYSIS; INDUCTIVE LEARNING; POOR PERFORMANCE; TAN;

EID: 69949110656     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2008.10.006     Document Type: Article
Times cited : (97)

References (24)
  • 1
    • 69949083993 scopus 로고    scopus 로고
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository, University of California, Irvine, 2007. .
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository, University of California, Irvine, 2007. .
  • 3
    • 46149090495 scopus 로고    scopus 로고
    • Bayesian networks in Weka
    • Technical Report 14/2004, Computer Science Department, University of Waikato
    • R.R. Bouckaert, Bayesian networks in Weka, Technical Report 14/2004, Computer Science Department, University of Waikato, 2004.
    • (2004)
    • Bouckaert, R.R.1
  • 6
    • 21244433569 scopus 로고    scopus 로고
    • TAN Classifiers Based on Decomposable Distributions
    • Cerquides J., and de Mántaras R. TAN Classifiers Based on Decomposable Distributions. Machine Learning 59 (2005) 323-354
    • (2005) Machine Learning , vol.59 , pp. 323-354
    • Cerquides, J.1    de Mántaras, R.2
  • 8
    • 0036567524 scopus 로고    scopus 로고
    • Learning belief networks from data: an information theory based approach
    • Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning belief networks from data: an information theory based approach. Artificial Intelligence 137 (2002) 43-90
    • (2002) Artificial Intelligence , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 9
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering D.M. Optimal structure identification with greedy search. Journal of Machine Learning Research 3 (2002) 507-554
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 10
    • 33646082044 scopus 로고    scopus 로고
    • On the incompatibility of faithfulness and monotone DAG faithfulness
    • Chickering D.M., and Meek C. On the incompatibility of faithfulness and monotone DAG faithfulness. Artificial Intelligence 170 (2006) 653-666
    • (2006) Artificial Intelligence , vol.170 , pp. 653-666
    • Chickering, D.M.1    Meek, C.2
  • 11
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper G.F. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42 (1990) 393-405
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 17
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20 (1995) 197-243
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.