메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 770-776

Discriminative model selection for belief net structures

Author keywords

Bayesian networks; Machine learning

Indexed keywords

BAYESIAN BELIEF NETS (BNS); BELIEF NET STRUCTURES; CONDITIONAL LIKELIHOOD; DISCRIMINATIVE MODEL SELECTION;

EID: 29344448279     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (30)

References (24)
  • 1
    • 34250108028 scopus 로고
    • Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical, extensions
    • [Boz87]
    • [Boz87] H. Bozdogan. Model selection and Akaike's Information Criterion (AIC): the general theory and its analytical, extensions. Psychometrica, 52, 1987.
    • (1987) Psychometrica , vol.52
    • Bozdogan, H.1
  • 3
    • 0042614837 scopus 로고    scopus 로고
    • Comparing Bayesian network classifiers
    • [CG99]
    • [CG99] J. Cheng and R. Greiner. Comparing Bayesian network classifiers. In UAI, 1999.
    • (1999) UAI
    • Cheng, J.1    Greiner, R.2
  • 4
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • [CH92]
    • [CH92] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning Journal, 9:309-347, 1992.
    • (1992) Machine Learning Journal , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 7
    • 14344256569 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers by maximizing conditional likelihood
    • [GD04]
    • [GD04] D. Grossman and P Domingos. Learning Bayesian network classifiers by maximizing conditional likelihood. In ICML2004, 2004.
    • (2004) ICML2004
    • Grossman, D.1    Domingos, P.2
  • 8
    • 2342601231 scopus 로고    scopus 로고
    • Learning Bayesian nets that perform well
    • [GGS97]
    • [GGS97] R. Greiner, A. Grove, and D. Schuurmans. Learning Bayesian nets that perform well. In UAI-97, 1997.
    • (1997) UAI-97
    • Greiner, R.1    Grove, A.2    Schuurmans, D.3
  • 9
    • 84858528105 scopus 로고    scopus 로고
    • [Gre05]
    • [Gre05] 2005. http://www.cs.ualberta.ca/~greiner/ DiscriminativeModelSelection.
    • (2005)
  • 10
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • [GSSZ05]
    • [GSSZ05] R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3), 2005.
    • (2005) Machine Learning , vol.59 , Issue.3
    • Greiner, R.1    Su, X.2    Shen, B.3    Zhou, W.4
  • 11
    • 0345438737 scopus 로고    scopus 로고
    • Structural extension to logistic regression
    • [GZ02]
    • [GZ02] R. Greiner and W. Zhou. Structural extension to logistic regression. In AAAI, 2002.
    • (2002) AAAI
    • Greiner, R.1    Zhou, W.2
  • 12
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • [Hec98]
    • [Hec98] D. Heckerman. A tutorial on learning with Bayesian networks. In Learning in Graphical Models, 1998.
    • (1998) Learning in Graphical Models
    • Heckerman, D.1
  • 14
    • 0031122049 scopus 로고    scopus 로고
    • An experimental and theoretical comparison of model selection methods
    • [KMNR97]
    • [KMNR97] M. Keams, Y. Mansour, A. Ng, and D. Ron. An experimental and theoretical comparison of model selection methods. Machine Learning, 27, 1997.
    • (1997) Machine Learning , vol.27
    • Keams, M.1    Mansour, Y.2    Ng, A.3    Ron, D.4
  • 16
    • 0001901666 scopus 로고
    • Induction of selective bayesian classifiers
    • [LS94]
    • [LS94] P. Langley and S. Sage. Induction of selective bayesian classifiers. In UAI-94, 1994.
    • (1994) UAI-94
    • Langley, P.1    Sage, S.2
  • 18
    • 1942418620 scopus 로고    scopus 로고
    • On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes
    • [NJ01]
    • [NJ01] A. Ng and M. Jordan. On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.1    Jordan, M.2
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • [Sch78]
    • [Sch78] G. Schwarte. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarte, G.1
  • 23
    • 0037980626 scopus 로고    scopus 로고
    • Model selection criteria for learning belief nets
    • [VG00]
    • [VG00] T. Van Allen and R. Greiner. Model selection criteria for learning belief nets. In ICML, 2000.
    • (2000) ICML
    • Van Allen, T.1    Greiner, R.2
  • 24
    • 0042199595 scopus 로고    scopus 로고
    • Bayesian error-bars for belief net inference
    • [VGH01]
    • [VGH01] T. Van Allen, R. Greiner, and P. Hooper. Bayesian error-bars for belief net inference. In UAI01, 2001.
    • (2001) UAI01
    • Van Allen, T.1    Greiner, R.2    Hooper, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.