-
1
-
-
34250108028
-
Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical, extensions
-
[Boz87]
-
[Boz87] H. Bozdogan. Model selection and Akaike's Information Criterion (AIC): the general theory and its analytical, extensions. Psychometrica, 52, 1987.
-
(1987)
Psychometrica
, vol.52
-
-
Bozdogan, H.1
-
3
-
-
0042614837
-
Comparing Bayesian network classifiers
-
[CG99]
-
[CG99] J. Cheng and R. Greiner. Comparing Bayesian network classifiers. In UAI, 1999.
-
(1999)
UAI
-
-
Cheng, J.1
Greiner, R.2
-
4
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
[CH92]
-
[CH92] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning Journal, 9:309-347, 1992.
-
(1992)
Machine Learning Journal
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
7
-
-
14344256569
-
Learning Bayesian network classifiers by maximizing conditional likelihood
-
[GD04]
-
[GD04] D. Grossman and P Domingos. Learning Bayesian network classifiers by maximizing conditional likelihood. In ICML2004, 2004.
-
(2004)
ICML2004
-
-
Grossman, D.1
Domingos, P.2
-
8
-
-
2342601231
-
Learning Bayesian nets that perform well
-
[GGS97]
-
[GGS97] R. Greiner, A. Grove, and D. Schuurmans. Learning Bayesian nets that perform well. In UAI-97, 1997.
-
(1997)
UAI-97
-
-
Greiner, R.1
Grove, A.2
Schuurmans, D.3
-
9
-
-
84858528105
-
-
[Gre05]
-
[Gre05] 2005. http://www.cs.ualberta.ca/~greiner/ DiscriminativeModelSelection.
-
(2005)
-
-
-
10
-
-
21244444642
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
[GSSZ05]
-
[GSSZ05] R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3), 2005.
-
(2005)
Machine Learning
, vol.59
, Issue.3
-
-
Greiner, R.1
Su, X.2
Shen, B.3
Zhou, W.4
-
11
-
-
0345438737
-
Structural extension to logistic regression
-
[GZ02]
-
[GZ02] R. Greiner and W. Zhou. Structural extension to logistic regression. In AAAI, 2002.
-
(2002)
AAAI
-
-
Greiner, R.1
Zhou, W.2
-
12
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
[Hec98]
-
[Hec98] D. Heckerman. A tutorial on learning with Bayesian networks. In Learning in Graphical Models, 1998.
-
(1998)
Learning in Graphical Models
-
-
Heckerman, D.1
-
14
-
-
0031122049
-
An experimental and theoretical comparison of model selection methods
-
[KMNR97]
-
[KMNR97] M. Keams, Y. Mansour, A. Ng, and D. Ron. An experimental and theoretical comparison of model selection methods. Machine Learning, 27, 1997.
-
(1997)
Machine Learning
, vol.27
-
-
Keams, M.1
Mansour, Y.2
Ng, A.3
Ron, D.4
-
16
-
-
0001901666
-
Induction of selective bayesian classifiers
-
[LS94]
-
[LS94] P. Langley and S. Sage. Induction of selective bayesian classifiers. In UAI-94, 1994.
-
(1994)
UAI-94
-
-
Langley, P.1
Sage, S.2
-
18
-
-
1942418620
-
On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes
-
[NJ01]
-
[NJ01] A. Ng and M. Jordan. On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes. In NIPS, 2001.
-
(2001)
NIPS
-
-
Ng, A.1
Jordan, M.2
-
22
-
-
0000120766
-
Estimating the dimension of a model
-
[Sch78]
-
[Sch78] G. Schwarte. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarte, G.1
-
23
-
-
0037980626
-
Model selection criteria for learning belief nets
-
[VG00]
-
[VG00] T. Van Allen and R. Greiner. Model selection criteria for learning belief nets. In ICML, 2000.
-
(2000)
ICML
-
-
Van Allen, T.1
Greiner, R.2
-
24
-
-
0042199595
-
Bayesian error-bars for belief net inference
-
[VGH01]
-
[VGH01] T. Van Allen, R. Greiner, and P. Hooper. Bayesian error-bars for belief net inference. In UAI01, 2001.
-
(2001)
UAI01
-
-
Van Allen, T.1
Greiner, R.2
Hooper, P.3
|