메뉴 건너뛰기




Volumn 1, Issue 1, 2001, Pages 1-48

Learning with mixtures of trees

Author keywords

[No Author keywords available]

Indexed keywords


EID: 24044550075     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (217)

References (51)
  • 1
    • 0012479268 scopus 로고    scopus 로고
    • Latent variable models
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Bishop, C. M. (1999). Latent variable models. In M. I. Jordan (Ed.), Learning in Graphical Models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Bishop, C.M.1
  • 5
    • 0002607026 scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • U. Fayyad, G. Piatesky-Shapiro, P. Smyth, & Uthurusamy (Eds.), AAAI Press
    • Cheeseman, P., & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results. In U. Fayyad, G. Piatesky-Shapiro, P. Smyth, & Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 153-180). AAAI Press.
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 7
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14(3), 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 8
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 11
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan, P., & Zemel, R. S. (1995). Competition and multiple cause models. Neural Computation, 7(3), 565-579.
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 13
    • 0023384210 scopus 로고
    • Fibonacci heaps and their uses in improved network optimization algorithms
    • Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the Association for Computing Machinery, 34(3), 596-615.
    • (1987) Journal of the Association for Computing Machinery , vol.34 , Issue.3 , pp. 596-615
    • Fredman, M.L.1    Tarjan, R.E.2
  • 14
    • 85156256883 scopus 로고    scopus 로고
    • Does the wake-sleep algorithm produce good density estimators?
    • D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm produce good density estimators? In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Neural Information Processing Systems (pp. 661-667). Cambridge, MA: MIT Press.
    • (1996) Neural Information Processing Systems , pp. 661-667
    • Frey, B.J.1    Hinton, G.E.2    Dayan, P.3
  • 15
    • 0000854197 scopus 로고    scopus 로고
    • The Bayesian structural EM algorithm
    • San Francisco, CA: Morgan Kaufmann
    • Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the 14th Conference on Uncertainty in AI (pp. 129-138). San Francisco, CA: Morgan Kaufmann.
    • (1998) Proceedings of the 14th Conference on Uncertainty in AI , pp. 129-138
    • Friedman, N.1
  • 20
    • 0041315314 scopus 로고
    • An entropy-based learning algorithm of Bayesian conditional trees
    • Morgan Kaufmann Publishers
    • Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees. In Proceedings of the 8th Conference on Uncertainty in AI (pp. 92-97). Morgan Kaufmann Publishers.
    • (1992) Proceedings of the 8th Conference on Uncertainty in AI , pp. 92-97
    • Geiger, D.1
  • 21
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45-74.
    • (1996) Artificial Intelligence , vol.82 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 23
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3), 197-243.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 24
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton, G. E., Dayan, P., Frey, B., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.3    Neal, R.M.4
  • 26
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 28
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 30
    • 84987049628 scopus 로고
    • Independence properties of directed Markov fields
    • Lauritzen, S. L., Dawid, A. P., Larsen, B. N., & Leimer, H.-G. (1990). Independence properties of directed Markov fields. Networks, 20, 579-605.
    • (1990) Networks , vol.20 , pp. 579-605
    • Lauritzen, S.L.1    Dawid, A.P.2    Larsen, B.N.3    Leimer, H.-G.4
  • 32
    • 21244439477 scopus 로고    scopus 로고
    • Tractable Bayesian learning of tree distributions
    • C. Boutilier & M. Goldszmidt (Eds.), San Francisco, CA: Morgan Kaufmann
    • Meilǎ, M., & Jaakkola, T. (2000). Tractable Bayesian learning of tree distributions. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the 16th Conference on Uncertainty in AI (pp. 380-388). San Francisco, CA: Morgan Kaufmann.
    • (2000) Proceedings of the 16th Conference on Uncertainty in AI , pp. 380-388
    • Meilǎ, M.1    Jaakkola, T.2
  • 33
    • 84898959728 scopus 로고    scopus 로고
    • Estimating dependency structure as a hidden variable
    • M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), MIT Press
    • Meilǎ, M., & Jordan, M. I. (1998). Estimating dependency structure as a hidden variable. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Neural Information Processing Systems (pp. 584-590). MIT Press.
    • (1998) Neural Information Processing Systems , pp. 584-590
    • Meilǎ, M.1    Jordan, M.I.2
  • 34
    • 0004286299 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, Massachusetts Institute of Technology
    • Meilǎ-Predoviciu, M. (1999). Learning with mixtures of trees. Unpublished doctoral dissertation, Massachusetts Institute of Technology.
    • (1999) Learning with Mixtures of Trees
    • Meilǎ-Predoviciu, M.1
  • 37
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • Moore, A. W., & Lee, M. S. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal for Artificial Intelligence Research, 8, 67-91.
    • (1998) Journal for Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.W.1    Lee, M.S.2
  • 38
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Neal, R. M., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in Graphical Models (pp. 355-368). Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 39
    • 0027929445 scopus 로고
    • On structuring probabilistic dependences in stochastic language modelling
    • Ney, H., Essen, U., & Kneser, R. (1994). On structuring probabilistic dependences in stochastic language modelling. Computer Speech and Language, 8, 1-38.
    • (1994) Computer Speech and Language , vol.8 , pp. 1-38
    • Ney, H.1    Essen, U.2    Kneser, R.3
  • 40
    • 0000175307 scopus 로고
    • Training knowledge-based neural networks to recognize genes in DNA sequences
    • R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Morgan Kaufmann Publishers
    • Noordewier, M. O., Towell, G. G., & Shavlik, J. W. (1991). Training knowledge-based neural networks to recognize genes in DNA sequences. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in Neural Information Processing Systems (pp. 530-538). Morgan Kaufmann Publishers.
    • (1991) Advances in Neural Information Processing Systems , pp. 530-538
    • Noordewier, M.O.1    Towell, G.G.2    Shavlik, J.W.3
  • 45
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D. B., & Thayer, D. T. (1983). EM algorithms for ML factor analysis. Psychometrika, 47, 69-76.
    • (1983) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 46
    • 0003383444 scopus 로고    scopus 로고
    • A mean field learning algorithm for unsupervised neural networks
    • M. I. Jordan (Ed.), Cambridge, MA: MIT Press
    • Saul, L. K., & Jordan, M. I. (1999). A mean field learning algorithm for unsupervised neural networks. In M. I. Jordan (Ed.), Learning in Graphical Models (pp. 541-554). Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models , pp. 541-554
    • Saul, L.K.1    Jordan, M.I.2
  • 48
    • 0031568356 scopus 로고    scopus 로고
    • Probabilistic independence networks for hidden Markov probability models
    • Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-270.
    • (1997) Neural Computation , vol.9 , pp. 227-270
    • Smyth, P.1    Heckerman, D.2    Jordan, M.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.