-
1
-
-
0012479268
-
Latent variable models
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Bishop, C. M. (1999). Latent variable models. In M. I. Jordan (Ed.), Learning in Graphical Models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Bishop, C.M.1
-
3
-
-
0000675721
-
Context-specific independence in Bayesian networks
-
Morgan Kaufmann
-
Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific independence in Bayesian networks. In Proceedings of the 12th Conference on Uncertainty in AI (pp. 64-72). Morgan Kaufmann.
-
(1996)
Proceedings of the 12th Conference on Uncertainty in AI
, pp. 64-72
-
-
Boutilier, C.1
Friedman, N.2
Goldszmidt, M.3
Koller, D.4
-
5
-
-
0002607026
-
Bayesian classification (AutoClass): Theory and results
-
U. Fayyad, G. Piatesky-Shapiro, P. Smyth, & Uthurusamy (Eds.), AAAI Press
-
Cheeseman, P., & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results. In U. Fayyad, G. Piatesky-Shapiro, P. Smyth, & Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 153-180). AAAI Press.
-
(1995)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
7
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14(3), 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.IT-14
, Issue.3
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
8
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
9
-
-
0004116989
-
-
Cambridge, MA: MIT Press
-
Cormen, T. H., Leiserson, C. E., & Rivest, R. R. (1990). Introduction to Algorithms. Cambridge, MA: MIT Press.
-
(1990)
Introduction to Algorithms
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.R.3
-
10
-
-
0003687180
-
-
New York, NY: Springer
-
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. New York, NY: Springer.
-
(1999)
Probabilistic Networks and Expert Systems
-
-
Cowell, R.G.1
Dawid, A.P.2
Lauritzen, S.L.3
Spiegelhalter, D.J.4
-
11
-
-
0001179408
-
Competition and multiple cause models
-
Dayan, P., & Zemel, R. S. (1995). Competition and multiple cause models. Neural Computation, 7(3), 565-579.
-
(1995)
Neural Computation
, vol.7
, Issue.3
, pp. 565-579
-
-
Dayan, P.1
Zemel, R.S.2
-
12
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society, B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
0023384210
-
Fibonacci heaps and their uses in improved network optimization algorithms
-
Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the Association for Computing Machinery, 34(3), 596-615.
-
(1987)
Journal of the Association for Computing Machinery
, vol.34
, Issue.3
, pp. 596-615
-
-
Fredman, M.L.1
Tarjan, R.E.2
-
14
-
-
85156256883
-
Does the wake-sleep algorithm produce good density estimators?
-
D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm produce good density estimators? In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Neural Information Processing Systems (pp. 661-667). Cambridge, MA: MIT Press.
-
(1996)
Neural Information Processing Systems
, pp. 661-667
-
-
Frey, B.J.1
Hinton, G.E.2
Dayan, P.3
-
15
-
-
0000854197
-
The Bayesian structural EM algorithm
-
San Francisco, CA: Morgan Kaufmann
-
Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the 14th Conference on Uncertainty in AI (pp. 129-138). San Francisco, CA: Morgan Kaufmann.
-
(1998)
Proceedings of the 14th Conference on Uncertainty in AI
, pp. 129-138
-
-
Friedman, N.1
-
16
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
18
-
-
84880688943
-
Learning probabilistic relational models
-
Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1996). Learning probabilistic relational models. In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1300-1307).
-
(1996)
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1300-1307
-
-
Friedman, N.1
Getoor, L.2
Koller, D.3
Pfeffer, A.4
-
20
-
-
0041315314
-
An entropy-based learning algorithm of Bayesian conditional trees
-
Morgan Kaufmann Publishers
-
Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees. In Proceedings of the 8th Conference on Uncertainty in AI (pp. 92-97). Morgan Kaufmann Publishers.
-
(1992)
Proceedings of the 8th Conference on Uncertainty in AI
, pp. 92-97
-
-
Geiger, D.1
-
21
-
-
0030125397
-
Knowledge representation and inference in similarity networks and Bayesian multinets
-
Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45-74.
-
(1996)
Artificial Intelligence
, vol.82
, pp. 45-74
-
-
Geiger, D.1
Heckerman, D.2
-
23
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3), 197-243.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
24
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G. E., Dayan, P., Frey, B., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.3
Neal, R.M.4
-
26
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
27
-
-
24044462764
-
-
(Tech. Rep. No. C-1996-9). University of Helsinki, Department of Computer Science
-
Kontkanen, P., Myllymaki, P., & Tirri, H. (1996). Constructing Bayesian finite mixture models by the EM algorithm (Tech. Rep. No. C-1996-9). University of Helsinki, Department of Computer Science.
-
(1996)
Constructing Bayesian Finite Mixture Models by the EM Algorithm
-
-
Kontkanen, P.1
Myllymaki, P.2
Tirri, H.3
-
28
-
-
58149210716
-
The EM algorithm for graphical association models with missing data
-
Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
-
(1995)
Computational Statistics and Data Analysis
, vol.19
, pp. 191-201
-
-
Lauritzen, S.L.1
-
30
-
-
84987049628
-
Independence properties of directed Markov fields
-
Lauritzen, S. L., Dawid, A. P., Larsen, B. N., & Leimer, H.-G. (1990). Independence properties of directed Markov fields. Networks, 20, 579-605.
-
(1990)
Networks
, vol.20
, pp. 579-605
-
-
Lauritzen, S.L.1
Dawid, A.P.2
Larsen, B.N.3
Leimer, H.-G.4
-
32
-
-
21244439477
-
Tractable Bayesian learning of tree distributions
-
C. Boutilier & M. Goldszmidt (Eds.), San Francisco, CA: Morgan Kaufmann
-
Meilǎ, M., & Jaakkola, T. (2000). Tractable Bayesian learning of tree distributions. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the 16th Conference on Uncertainty in AI (pp. 380-388). San Francisco, CA: Morgan Kaufmann.
-
(2000)
Proceedings of the 16th Conference on Uncertainty in AI
, pp. 380-388
-
-
Meilǎ, M.1
Jaakkola, T.2
-
33
-
-
84898959728
-
Estimating dependency structure as a hidden variable
-
M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), MIT Press
-
Meilǎ, M., & Jordan, M. I. (1998). Estimating dependency structure as a hidden variable. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Neural Information Processing Systems (pp. 584-590). MIT Press.
-
(1998)
Neural Information Processing Systems
, pp. 584-590
-
-
Meilǎ, M.1
Jordan, M.I.2
-
34
-
-
0004286299
-
-
Unpublished doctoral dissertation, Massachusetts Institute of Technology
-
Meilǎ-Predoviciu, M. (1999). Learning with mixtures of trees. Unpublished doctoral dissertation, Massachusetts Institute of Technology.
-
(1999)
Learning with Mixtures of Trees
-
-
Meilǎ-Predoviciu, M.1
-
35
-
-
0003612091
-
-
New York: Ellis Horwood
-
Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine Learning, Neural and Statistical Classification. New York: Ellis Horwood.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
37
-
-
0001828003
-
Cached sufficient statistics for efficient machine learning with large datasets
-
Moore, A. W., & Lee, M. S. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal for Artificial Intelligence Research, 8, 67-91.
-
(1998)
Journal for Artificial Intelligence Research
, vol.8
, pp. 67-91
-
-
Moore, A.W.1
Lee, M.S.2
-
38
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Neal, R. M., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in Graphical Models (pp. 355-368). Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
39
-
-
0027929445
-
On structuring probabilistic dependences in stochastic language modelling
-
Ney, H., Essen, U., & Kneser, R. (1994). On structuring probabilistic dependences in stochastic language modelling. Computer Speech and Language, 8, 1-38.
-
(1994)
Computer Speech and Language
, vol.8
, pp. 1-38
-
-
Ney, H.1
Essen, U.2
Kneser, R.3
-
40
-
-
0000175307
-
Training knowledge-based neural networks to recognize genes in DNA sequences
-
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Morgan Kaufmann Publishers
-
Noordewier, M. O., Towell, G. G., & Shavlik, J. W. (1991). Training knowledge-based neural networks to recognize genes in DNA sequences. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in Neural Information Processing Systems (pp. 530-538). Morgan Kaufmann Publishers.
-
(1991)
Advances in Neural Information Processing Systems
, pp. 530-538
-
-
Noordewier, M.O.1
Towell, G.G.2
Shavlik, J.W.3
-
42
-
-
0030689145
-
The FERET evaluation methodology for face-recognition algorithms
-
San Juan, Puerto Rico
-
Philips, P., Moon, H., Rauss, P., & Rizvi, S. (1997). The FERET evaluation methodology for face-recognition algorithms. In Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico.
-
(1997)
Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition
-
-
Philips, P.1
Moon, H.2
Rauss, P.3
Rizvi, S.4
-
43
-
-
0004214436
-
-
Rasmussen, C. E., Neal, R. M., Hinton, G. E., Camp, D. van, Revow, M., Ghahramani, Z., Kustra, R., & Tibshrani, R. (1996). The DELVE Manual. http://www.cs.utoronto.ca/∼delve.
-
(1996)
The DELVE Manual
-
-
Rasmussen, C.E.1
Neal, R.M.2
Hinton, G.E.3
Van Camp, D.4
Revow, M.5
Ghahramani, Z.6
Kustra, R.7
Tibshrani, R.8
-
45
-
-
34250232348
-
EM algorithms for ML factor analysis
-
Rubin, D. B., & Thayer, D. T. (1983). EM algorithms for ML factor analysis. Psychometrika, 47, 69-76.
-
(1983)
Psychometrika
, vol.47
, pp. 69-76
-
-
Rubin, D.B.1
Thayer, D.T.2
-
46
-
-
0003383444
-
A mean field learning algorithm for unsupervised neural networks
-
M. I. Jordan (Ed.), Cambridge, MA: MIT Press
-
Saul, L. K., & Jordan, M. I. (1999). A mean field learning algorithm for unsupervised neural networks. In M. I. Jordan (Ed.), Learning in Graphical Models (pp. 541-554). Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
, pp. 541-554
-
-
Saul, L.K.1
Jordan, M.I.2
-
48
-
-
0031568356
-
Probabilistic independence networks for hidden Markov probability models
-
Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-270.
-
(1997)
Neural Computation
, vol.9
, pp. 227-270
-
-
Smyth, P.1
Heckerman, D.2
Jordan, M.I.3
-
49
-
-
0042883423
-
-
(Tech. Rep. Nos. MSR-POR-97-30). Microsoft Research
-
Thiesson, B., Meek, C., Chickering, D. M., & Heckerman, D. (1997). Learning mixtures of Bayes networks (Tech. Rep. Nos. MSR-POR-97-30). Microsoft Research.
-
(1997)
Learning Mixtures of Bayes Networks
-
-
Thiesson, B.1
Meek, C.2
Chickering, D.M.3
Heckerman, D.4
-
50
-
-
0004246255
-
-
4 ed.. Menlo Park, CA: The Benjamin/Cummings Publishing Company
-
Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., &; Weiner, A. M. (1987). Molecular Biology of the Gene (Vol. I, 4 ed.). Menlo Park, CA: The Benjamin/Cummings Publishing Company.
-
(1987)
Molecular Biology of the Gene
, vol.1
-
-
Watson, J.D.1
Hopkins, N.H.2
Roberts, J.W.3
Steitz, J.A.4
Weiner, A.M.5
|